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ABSTRACT

The retinal vasculature analysis plays an important role in the diagnosis of

ophthalmological diseases, as well as general human disorders that manifest on the

retina. The fundus photograph is a 2-D color image modality of the retina and is

widely used in modern ophthalmology clinics due to its relatively low cost and its non-

invasive access to the retina. However, due to the complexity of the retinal vasculature

presented on the image and the large variation of the image quality, no automated

method is able to re-construct the retinal vasculature (i.e. construct arteriovenous

trees) satisfactorily, thus preventing its analysis on large-scale clinical datasets.

In this thesis, we present a systematic and complete study to automatically

construct the retinal vasculature on fundus photographs and apply it to a clinical

dataset. First of all, a preliminary study is conducted to detect and classify impor-

tant landmarks in the retinal vasculature using a machine learning method. The

evaluation of this method reveals the difficulty of identifying each landmark as an

independent target. Then a novel and more global method is proposed to construct

retinal arteriovenous trees (A/V trees). The strategy of the proposed method is

to build an over-connected vessel network, and separate it into vascular trees, then

classify them into A/V trees. Particularly, by taking advantages of specific proper-

ties of the retinal vasculature, global and local information are combined together

to recognize landmarks of the vasculature. Instead of recognizing each landmark in-

dependently as other methods do, this method considers the relationship between
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landmarks in a more global manner, thus recognizing them simultaneously and glob-

ally. With a special graph design, each landmark is associated with multiple possible

configurations and costs, and a near optimal solution is selected by minimizing the

costs of landmarks and the global property of the whole vascular network. With

each landmark recognized, the A/V trees are easily inferred with a pixel classification

method. By doing so, local noise in the images and local errors during pre-processing

are corrected to some degree, and small vessels that are difficult to classify locally

can also be recognized. The proposed method is compared with another method and

the evaluation demonstrates its superiority.

To demonstrate its potential applicability, we apply the proposed method on

a cohort study data of HIV-infected patients with treatment. New metrics to analyze

retinal vessel width is developed based on the A/V trees built using the proposed

method, and it is compared with a conventional metric. Statistical analysis reveals

the advantages of the new metric and thus indicates the benefit of the proposed

method and its potential application on large datasets.
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PUBLIC ABSTRACT

The retinal vasculature is an important target in ophthalmology clinics because

it provides insight to many ophthalmologic diseases, as well as general disorders that

manifest on the retina. The fundus photograph is a 2-D color image modality of the

retina and is widely used in modern ophthalmology clinics due to its relatively low

cost and its non-invasive access to the retina. The analysis of the retinal vasculature

is time-consuming and demands effort of human experts. Thus with limited human

resources, the largely increasing clinical data collected from patients demands the

automation of the analysis. However, due to the complexity of the vasculature pre-

sented on the image and the variation of the image quality, no automated method

is able to re-construct arteriovenous trees satisfactorily, which is the most important

step of the automatic analysis.

In this work, we conduct a systematic and complete study to automatically

construct retinal arteriovenous trees (A/V trees) in fundus photographs. It requires

the classification of vessels into arteries and veins, and also the detection of con-

nections between vessels. First of all, a conventional method is conducted to au-

tomatically detect and classify an important type of structure, bifurcations in the

vasculature. The result reveals the difficulty of constructing A/V trees by identifying

each bifurcation independently. Then a novel and more global method is proposed.

The strategy of the proposed method is to build an over-connected vessel network,

separate it into vascular trees, and then classify them into A/V trees. Particularly, by

vi
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taking advantages of properties of the retinal vasculature, global and local information

of retinal vessels are combined together to recognize landmarks of the vasculature.

Instead of recognizing each landmark independently as conventional methods do, we

consider relation between landmarks, and recognize them simultaneously and glob-

ally. After landmarks are recognized, the types of trees can be easily inferred and

A/V trees are constructed. A comparison is made between the proposed method and

another method and the evaluation shows its merits.

In addition, to demonstrate its applicability, we use it to analyze the changes

of vessel width on HIV-infected patients under highly active antiretroviral therapy

(HAART). With A/V trees constructed using the proposed method, vessel widths

are analyzed using a novel method. The vessel widths calculated using the new

method are compared with vessel widths calculated using a conventional method. The

comparison reveals the advantages of this new method, thus indicating the potential

applicability of the proposed A/V tree construction method.
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CHAPTER 1
INTRODUCTION

A color fundus photograph is a widely-used image modality in ophthalmologic

clinics, which is used for the diagnosis of retinal diseases, and other ophthalmologic

diseases and disorders, and some general disorders with symptoms reflected on the

retina. Recently, with the increasing popularity and demands of computer-aided

diagnosis (CAD), the application of such technologies on the fundus photographs

has become an interesting topic. One of the key issues and important tasks is to

automatically construct the arterial and venous vascular trees (A/V trees) on retinal

photographs. As one of the most important and visible structures, the vascular trees

reveals information about retinopathies and the health status of the human body.

It also proves to be a reliable and important landmark for the detection of other

structures like the optic disc and the macula, and for other image-processing tasks

such as image registration and mosaicing. However due to the structural complexity

of vascular trees, the automatic construction of A/V trees proves to be a very difficult

task and so far there is no satisfying method. Hence in this work, a rigorous study is

conducted to develop a method to automatically detect the arterial and venous trees

in retinal photographs and explore its potential application.

1.1 Specific Aims

Due to the complexity of this problem, three specific aims are desgined to solve

one aspect of the problem, as following:
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• Aim 1: To develop and evaluate an automatic approach for the detection and

localization of retinal vessel branches using a vision-machine approach.

• Aim 2: To develop and formulate a framework to solve the binary overlapping

trees problem using a graph-based model, and to apply it to construct A/V

trees in fundus photographs.

• Aim 3: Based on Aim 2, given the constructed A/V trees in fundus photographs,

to develop metrics to measure and analyze the width of retinal vessels in a

clinical dataset.

1.2 Thesis Overview

According to the aims proposed above and the work conducted, this thesis

is divided into 7 chapters, each of which describes a specific aspect of the problem.

Besides this chapter as Introduction, the rest is organized as following:

• Chapter 2 provides detailed background information of the entire work, in-

cluding a clinical background review and a technical background review. The

clinical background reviews the human eye structure, the fundus photographs,

and diseases related to the retinal vasculature. The technical background re-

views related image analysis technologies including the vessel segmentation, the

determination of vessel connectivity, the classification of arteries and veins, and

the retinal vasculature analysis.

• Chapter 3 presents a developed automatic approach of retinal vessel branch

detection and localization using a vision-machine approach.
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• Chapter 4 presents a developed framework to solve the binary overlapping tree

problem using a special graph-based model and the application of it to construct

A/V trees in fundus photographs.

• Chapter 5 presents a developed method to measure and analyze the width of

A/V trees and the application of it on clinical pathological analysis.

• Chapter 6 discuss the merits and issues of the work, and also potential work for

future.

• Chapter 7 summarizes and concludes the thesis.
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CHAPTER 2
BACKGROUND AND LITERATURE REVIEW

2.1 Clinical Background

2.1.1 The Anatomy of Human Eye

The human eye is the visual sense organ sensitive to light and transforming it

into an electrical signal. Figure 2.1 shows the brief anatomical inner structure of the

eye. Anatomically the human eye is made of three layers, enclosing three transparent

structures [5]. The outermost layer is composed of the cornea and sclera. The middle

layer consists of the choroid, ciliary body, and iris. The innermost is the retina, which

obtains its circulation from the vessels of the choroid as well as the retinal vessels,

which can be seen in an ophthalmoscope, or in fundus images. Bound by these layers

are the aqueous humor, the crystalline lens and the vitreous body [6].

The cornea is transparent to light and contains no blood vessels and its primary

function is to transmit and focus light into to the eye. Located at the front of the eye,

it is approximately 11 mm in diameter and 500 µm thick in the center, thickening to

around 700 µm at the periphery [7].

The fluid that fills the anterior chamber of the eye, the area between the cornea

and the front surface of the crystalline lens, is called the aqueous humor, or aqueous.

Besides being part of the optical pathway of the eye, aqueous provides nutrients to

the cornea and the crystalline lens. The iris is visible through the cornea and defines

the “color” of the eye. The main function of the iris is to block excess light from



www.manaraa.com

5

entering the eye. The amount of light entering the eye is controlled by the aperture

of the iris or “pupil”. Like the cornea, the crystalline lens is a transparent structure.

It is suspended from the ciliary body by the suspensory ligament (Zonule of Zinn),

made up of fine transparent fibers. Unlike the cornea, it has the ability to change its

shape in order to increase or decrease the amount of refracting power applied to light

coming into the eye.

Between the lens and the retina is the vitreous, also called the vitreous body

or vitreous humor, which is a transparent and gelatinous material, serving to provide

for light transmission through the eye and to protect the retina. About 98 - 99% of

the vitreous volume is water and it contains very few cells, and no blood vessels [7].

The retina is a light sensitive tissue layer lining the interior of the posterior

portion of the globe. The photosensitive cells on the retina detect light passing

through the cornea and the lens. The fovea centralis (as shown in Figure 2.1), usually

known as the fovea, is located in the center of the macular region on the retina, which

is responsible for the sharp central vision. Approximately 50% of the nerve fibers in

the optic nerve carry information from the fovea [8]. The optic disc or optic nerve

head is where ganglion cell axons exit the eye. It is usually placed 3 − 4 mm to the

nasal side of the fovea [8]. The optic nerve is a bundle of more than one million nerve

fibers which connect the retina to the brain. It is also the place where all retinal

blood vessels originate and converge. Although it is commonly referred as arteries

and veins in the retina, the vascular tree of the retina actually consists of arterioles

and venules. This is because the widest part of the lumen of the retinal vessels is near
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Figure 2.1: A simple illustration of eye anatomy (image courtesy of reference [1].

the optic disc with diameters of about 100 µm, with neither internal elastic lamina

nor a continuous muscular coat.

The mechanism of how the human eye captures the light and transfers to

electrical signal into brain is illustrated in Figure 2.2. Light entering the eye is first

refracted when it pases through the cornea. It then passes through the pupil and

is further refracted by the lens. Finally it reaches the retina and is converted to

electrical signals by photosensitive photoreceptor in the retina. These signals are

then transmitted to the brain along the optic nerve, and processed by the brain to

form vision.
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Figure 2.2: A Light path of the visual system (image courtesy of reference [2]).

2.1.2 Fundus Photography

The fundus of the eye is the interior surface of the eye, including the retina,

optic disc, macula and fovea. A fundus photograph is a photograph of the fundus

taken by an ophthalmoscope, or a fundus camera. The following is quoted from a

review by Abramoff et al [9]. The first manually drawn picture of the fundus was

done by the Dutch ophthalmologist van Trigt in 1853 [10]. Later photographic images

of the retina which showed the blood vessels were obtained in 1891 by the German

ophthalmologist Gerloff [11]. The first fundus camera was developed by Gullstrand

in 1910, and the concept behind is still used to image the retina today [12].

An example of a human fundus photograph is shown in Figure 2.3(b). A typ-

ical human fundus photograph usually appears reddish. Three major structures are

present in a normal human eye fundus photograph: the optic disc (or optic nerve

head), the macula and blood vessels. The optic disc appears to be a bright circu-
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lar region in the image, where all blood vessels appear to converge. Blood vessels

are commonly darker than the retina background, but arteries are usually brighter

compared to veins. The macula is a dark region where few blood vessels are present.

Ophthalmologists can diagnose retinopathies by examining a presence of abnormali-

ties of the retina on the fundus photographs such as hemorrhages, exudates, cotton

wool spots, blood vessel abnormalities, and pigmentation and so forth.

(a) (b)

Figure 2.3: Examples of a fundus camera and a fundus photograph. (a) A fundus

camera (figure from reference [3]). (b) A typical fundus photograph (from DRIVE

dataset [4]).

Because of its safety and cost-effectiveness at documenting retinal abnormali-

ties, fundus photograph has been the primary image modality for the retina clinically.

It is commonly used in screening programs, where the photos can be analyzed later for
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diagnosis and/or to monitor the progress for many diseases. However, in a screening

program, where thousands of fundus photographs are taken, it is difficult for the oph-

thalmologists to personally exam every photo, especially in the extremely laborious

work to measure and to collect data for every structures in the image. Automated

diagnosis thus is introduced to partially relieve the problem by semi-automatically or

automatically detecting retinal structures, and certain diseases [13].

2.1.3 Diseases Related with Retinal Vascular Changes

As one of the most important structures in the human eye and part of human

circulation, not only does the retinal vasculature reveal retinopathies, but it also

indicates some general diseases and the healthy state of human beings. It has been

reported that the changes in the retinal vasculature are associated with different types

of diseases, disorders and abnormalities.

One type of disease associated with changes in the retinal vasculature is dia-

betes mellitus and its complications in the retina. According to the current definition

from the World Health Organization, diabetes mellitus is typically diagnosed if a

patient has a fasting plasma glucose over 7.0 mmol/L [14]. Diabetes is a prevalent

disease in US. The number of patients with diabetes in the U.S. is increasing rapidly

and reached 25.8 million in 2010[15]. One direct complication of diabetes mellitus is

diabetic retinopathy (DR), which is the second most common cause of blindness and

visual loss in the US, and the most important cause in the working age population [9].

It is an ocular manifestation of diabetes which affects up to 80 percent of all patients
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who have had diabetes for 10 years or more [16].

DR is a progressive disease which can be broadly classified into two types

depending on the stage of the progression and their manifestations. One is non-

proliferative diabetic retinopathy (NPDR), which happens at the early stage of DR,

and another is proliferative diabetic retinopathy (PDR), which is the most advanced

stage of DR. NPDR develops as a result of damages to the blood vessels in the retina,

which may leak fluid or blood, causing the retina to swell and/or form deposits.

PDR is caused by ischemia that results in the growth of new and abnormal blood

vessels that may subsequently bleed and/or cause retinal detachment. Besides, at

any time during the progression of DR, diabetic macular edema (DME) may happen,

which is a complication involving the retinal thickening in the macular area [17]. It

occurs after the breakdown of the blood-retinal barrier due to the leakage of dilated

hyperpermeable capillaries and microaneurysms.

There is abundant evidence that blindness and visual loss caused by DR can

be prevented or reduced through annual screening and early diagnosis [18, 19]. The

changes of the retina have been used to determine the severity of DR and a common

guideline is used to grade the progression of DR [20, 21, 22] . Microaneurysms are

the sign of a early onset of NPDR, and intraretinal hemorrhages and prominent

intraretinal microvascular anomalies are the sign of severe NPDR. Neovascularization

and vitreous or preretinal hemorrhage are the signs of PDR.

Studies show that retinal vascular changes may precede the subsequent devel-

opment of overt diabetes, and thus could be used to diagnose pre-diabetes or predict



www.manaraa.com

11

diabetes [23]. This is essential not just because of the importance of early diagnosis,

but also because approximately 30% of people with diabetes in US, or 6.2 million

people, are undiagnosed [24]. Studies show that smaller arteriolar caliber, or wider

retinal venular caliber is a marker of chronic hyperglycemia and the pre-diabetes

state and reflects the early microvascular changes that occur in the development of

diabetes [25, 26, 27].

Another type of related diseases are cardiovascular diseases (CVDs) and their

manifestations in the eye. CVDs are the most prevalent and most deadly diseases

which remain one of the leading causes of death in the world and in the US. 17 million

people died due to CVDs worldwide in 2008 [28], and the 2008 overall death rate from

CVDs in the US was 244.8 per 100 000 people [29]. Cardiovascular disease manifests

itself in the retina in a number of ways. It has been reported that the changes in

retinal vasculature is associated with several types of CVDs and their risk factors

[30, 31, 32, 33, 34]. Thinning of the arteries and widening of the veins, is associated

with an increased risk of stroke [35, 36], myocardial infarction [37, 38], and carotid

artery disease [39], thus may be used as markers of early subclinical cardiovascular

disease.

As an important risk factor for coronary heart disease and the single most

important risk factor for stroke, hypertension is associated with many changes of

the retinal vasculature. Substantial evidence shows a strong association between the

naorrowing of retinal arterioles and hypertension [33, 34, 37, 40, 41, 42]. In addition,

an increase in the retinal arteriolar length-to-diameter ratio [43, 44], increased retinal
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venular tortuosity [43], reduced branching angle at arteriole bifurcations [45], and

reduced microvascular density [43, 45, 46], have been associated with hypertension.

Moreover, the retinal arteriolar narrowing is associated with hypertensive retinopathy,

which is referred as the pathophysiological changes in retinal vessels in response to

blood pressure elevation. On the other hand, although less is known about the patho-

physiological mechanisms of retinal venular caliber changes, epidemiological studies

have consistently shown associations of retinal venular caliber with systemic inflam-

matory markers [47]. Besides, retinal venular widening is reported to be associated

with risk factors including smoking, hyperglycemia, obesity, and dyslipidemia [32]. In

addition, systemic vascular disease can cause arterial and venous occlusions, known

as central and branch arterial occlusions (CRAO, BRAO) and central and branch

venous occlusions (CRVA, BRVO) [9].

Recently, research has been conducted to study the relation between changes

in the retinal vasculature and HIV-infected people. HIV is short for human immunod-

eficiency virus and is a significant epidemic that threatens the human race. Globally

35 million people were living with HIV and 1.6 million died from AIDS in 2012 [48].

So far there is no cure and the most common treatment to suppress HIV is the

highly active anti-retroviral therapy (HAART) [49], also as known as combination

anti-retroviral therapy (cART). Successful HAART can decrease the HIV burden,

maintain the function of the immune system and largely suppress the incidence of

opportunistic infections. However, because HAART does not restore the immune

system and has cumulative toxic effects, there is a trend that HIV-infection is trans-
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formed from a fatal disease into a chronic condition [50]. A series of non-AIDS related

disorders are merged in HIV patients who are well-treated, including cardiovascular

disease [51, 52], kidney disease [53, 54], liver disease [55], malignancy [56, 57]. As part

of the micro-circulation, the retinal vasculature provides an access to examine and

monitor changes and conditions related to the circulation, which can reflect physio-

logical and metabolic changes of HIV patients. Recent studies have shown that the

retinal vasculature changes as a result of HIV infection, as well as HAART treat-

ment [58, 59], including arteriolar and venular vessel widths, the branching angle and

vascular tortuosity [60, 61]. However, some of findings are inconclusive, and the cause

of these changes is not established currently.

2.2 Technical Background

A lot of research has been dedicated to the segmentation of the retinal vascu-

lature in fundus images. However, compared to the extensive study of vessel segmen-

tation, the construction of arterial and venous vasculature in fundus images is still

a difficult problem yet to be tackled. Although much of the related work has been

done in recent years, most of it is only focused on partial solutions of the problem.

In this section, we review the previous contributions in the area of constructing the

vasculature anatomical trees in retinal images. The application of the A/V tree con-

struction in clinics is also reviewed as the demonstration of the benefits and demands

of this technology.

To better understand these related works, we review previous works by groups
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based on their applications, which are the vessel segmentation, the recognition of

landmarks (the determination of vessel connectivity), the distinguishing of arteries

and veins, and the retinal vasculature analysis. The first three parts are related

with each other and compose the problem of constructing anatomical vasculature.

The vessel segmentation is the basic procedure and can be considered as the pre-

processing of the other two applications. The distinguishing of arteries and veins and

the recognition of landmarks are related to each other in a way that their results

are mutually affected, and they can be considered as post-processing of the vessel

segmentation. The last part is the application of the first three technologies, which

is to analyze the retinal vasculature with some metrics and to examine, monitor, and

diagnosis disease.

However, compared to the problem of vessel segmentation, the problems of

recognizing landmarks and differentiating arteries and veins are more difficult and

they can be viewed as a single problem in essence that is to construct the arterial and

venous vascular trees. First because of the loss of information during the projection

of 3-D structure of retinal vasculature onto 2-D fundus image, some bifurcations

and cross points are not easily recognizable, especially when two vessels partially

overlap with each other. Secondly, due to the imperfection of imaging, some segments

of vessels are not present in the image, which would change the structures of the

vasculature. This problem is also hardened by the current segmentation techniques

which cannot render 100 percent accuracy on vessel segmentation. It means that false

positives and false negatives would be generated, which would change the topology
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of the retinal vasculature.

The following sections are the detail summary and review of methods in these

four problems.

2.2.1 Vessel Segmentation

Vessel segmentation is generally considered the first step to construct the

anatomical vasculature tree. It separates the target of vessel pixels from the back-

ground, which is essential for the construction of anatomical trees. Here we are

reviewing these methods which only consider the separation of vessels pixels from

non-vessel pixels. Some other similar methods which explicitly recognize arterial

vessels and venous vessels from the background are reviewed in 2.2.3.

A large number of approaches have been developed to segment retinal vessels.

To better review these different methods, we divide them into two broad categories,

based on whether the machine learning strategy of pixel classification is adopted

or not (whether a classifier is implemented or not): one is the pixel-based processing

method; another is a broad group of methods called rule-based methods, which include

vessel tracking approaches, mathematical morphology, matched filtering, model-based

locally adaptive thresholding and deformable models, or the combination of multiple

methods.

The pixel-based processing approach works by labeling every image pixel as

vessel or non-vessel. Among these approaches, a number of them use adaptive filtering

or unsupervised method to segment the vessels. Bhuiyan et al. [62] developed an
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unsupervised classification method to segment vessels. First, the input color image

is converted from RGB into a perceptually uniform color space. Second, texture

features are extracted after contrast enhancement in the four channels selected from

different color spaces. Finally, the Fuzzy C-means clustering algorithm is applied to

classify the obtained feature vectors, associated with each image pixel, into vessels

and background. In the method presented in [63], blood vessel-like objects were

extracted by using the Laplacian operator and noisy objects were pruned according

to centerlines, detected using the normalized gradient vector field.

However, as machine learning algorithms or supervised methods gain increas-

ing popularity in computer vision fields recently, more methods are developed using

the supervised methods to classify vessel pixels with different feature extraction ap-

proaches [64, 65, 4, 66, 67, 68, 69, 70, 71]. Image pixels are represented by a set

of specific features and a classifier is trained using manually labeled data and used

to classify vessels. Here we are reviewing supervised classification methods which

combine different classifiers with different feature extraction strategies. The machine

learning methods can achieve very high accuracy and they usually can detect very

small vessels, under the circumstances that the features and the classifiers are well-

chosen. Some of the current supervised methods can achieve very high area under

the curve (AUC) of Receiver operating characteristic (ROC), but there are some

drawbacks. Because they use local features to represent vessel pixels, pixels near

some landmarks (i.e. bifurcations and crossing points) might be missed since they

have a different appearance from normal vessel pixels. Also some discontinuity or in-
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consistency would happen at some vessel pixels whose vessel features are not strong.

Another drawback is that they can spend much time on classifying background pixels,

which are definitely not vessel pixels.

One early pixel-based method was proposed by Gardner et al. [64], using a

back propagation multilayer neural network (NN) for the vessel segmentation. After

histogram equalization, smoothing and edge detection, the image was divided into 20

× 20 pixel squares (400 input neurons). The NN was then fed with the values of these

pixel windows for classifying each pixel as vessel or non-vessel. Sinthanayothin et al.

[65] also used a multilayer perceptron NN. Each pixel in the image was classified by

using the first principal component, and the edge strength values from a 10 × 10

pixel sub-image centered on the pixel under evaluation, as input data. Diego Marin

et al. [71] also developed an approach using a multilayer NN classifier with a 7-D

feature vector, composed of gray-level-based features and moment invariants-based

features. Gray-level-based features describe the intensity information of a target pixel

compared to its neighbors and moment invariants-based features capture the linear

shape invariant to translation, rotation and scale.

Niemeijer et al. [4] segmented vessels using a K-nearest neighbor (kNN) classi-

fier with a 31-D feature vector. The feature vector was constructed with the Gaussian

filter and its derivatives up to order 2 at 5 different scales, augmented with the gray-

level from the green channel of the original image. Staal et al. [66] proposed a super-

vised ridge-based vessel segmentation method with a kNN classifier. Their method is

based on the assumption that vessels are elongated structures. Ridges were extracted
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from the image and used as primitives to form line elements. Each pixel was then

assigned to its nearest line element so that the image is partitioned into patches. For

every pixel, 27 features were firstly computed and sequential forward feature selection

was applied to select the most distinguishing features which yielded the best result.

Soares et al. [67] proposed to use the Bayesian classifier with the Gaussian

mixture model, trained based on features consisting of multi-scale Gabor wavelet

transform responses and pixel intensity. Specifically, the gray-level of the inverted

green channel and the maximum Gabor transform response over angles at four differ-

ent scales were considered as pixel features. They used the expectation maximization

(EM) algorithm to train the the Bayesian classifier.

Sofka et al. [68] developed a strategy to extract a 6-D feature vector to rep-

resent vessels by measuring the strength and confidence of vessels and edges derived

from multi-scale matched filters. Then they used the likelihood ratio test based on

Neyman-Pearson Lemma as the classifier in which the conditional probability density

function corresponding to each feature is trained in form of a 1-D histogram.

Ricci and Pefetti [69] used a support vector machine (SVM) for the pixel

classification. They used two orthogonal line detectors along with the gray-level of

the target pixel and the pixel intensity to construct a 3-D feature vector.

Carmen Alina Lupascu et al. [70] used the adaBoost classifier to segment vessel

pixels. They combined features from previous works and their own development to

obtain a 41-D feature vector encoding information on the local intensity structure,

spatial properties, and geometry at multiple scales. These features are responses to
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Gaussian filters, model-based features used in [68], vesselness features developed in

[72], Lindeberg ridges features in [73], Staal ridges feature in [66], Gabor wavelet

features and other features.

Among the rule-based methods, one typical group of methods is referred to as

vessel tracking/tracing, vectorial tracking approaches [74, 75, 76, 77, 78, 79]. These

methods work by first locating an initial set of points established automatically or by

manual labeling, and then exploiting local image properties to trace the vasculature

recursively. They only process pixels close to the vasculature, avoiding the processing

of every image pixel, and so are appropriately called exploratory algorithms. How-

ever, the tracing-based methods are naturally recursive greedy methods, which means

that the mistake of failing to detect vessel pixels at any stage could propagate and

compromise the final results.

Other methods are developed to use mathematical morphology [80, 81, 82] to

benefit from a priori-known vasculature shape features, such as being piecewise linear

and connected. Then, by applying morphological operators, vessels are filtered from

the background for final segmentation.

Similar to the supervised pixel-classification method but without the classifier

component, matched filtering techniques [83, 84, 85, 86, 87, 88] usually use a 2-D

linear structural element with a Gaussian cross-profile section for blood vessel cross-

profile identification (typically a Gaussian or Gaussian-derivative profile). The kernel

is rotated into many different orientations (usually 8 or 12) to search for vessels with

different orientations. The image is then thresholded to extract the vessel silhouette
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from the background.

Besides, other methods which combine several strategies have also been devel-

oped. For example, a general framework based on a verification-based multi-threshold

probing scheme was presented by Jiang et al. in [89]. The authors enriched this

generic methodology by incorporating relevant information related to retinal vessels

into the verification process with the aim of enabling its application to retinal images.

Al-Diri et al. [90] developed a method using an active contour model to segment ves-

sels. Deformable or snake models have been also used in [91]. A snake is an active

contour model that, once placed on the image near the contour of interest, can evolve

to fit the shape of the desired structure by an iterative adaption. Martinez et al. [92]

proposed a method based upon multiscale feature extraction combined with region

growing. The local maxima over scales of the gradient magnitude and the maximum

principal curvature of the Hessian tensor were used in a multiple-pass region growing

procedure. The growth progressively segments the blood vessels by using both feature

and spatial information.

2.2.2 Determination of the Retinal Vessel Connectivity

The determination of vessel connectivity is to determine the anatomical con-

nectivity of vessels, which is equivalent to locate and determine landmarks in the

vasculature trees including bifurcations, crossing points, and end points. The 2-D

retinal images are the projection image of the actual 3-D retina, thus the 3-D actual

tree-like vasculature is projected onto a 2-D surface to form a complex graph-like
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structure. This makes the construction of vasculature trees a special and difficult

problem from a general tree construction problem. Although many works have been

proposed for the vasculature construction in 3-D images, a smaller number of works

have focused on the construction of the vasculature in the 2-D retinal images. To sum-

marize the previous work, some of general methods for the vascular tree construction

are reviewed first.

In 1993, Coppini et al. [93] proposed a bottom-up coronary artery extraction

method based on angiogram edges. These edges are grouped into edge segments,

which are organized to bar primitives, and ultimately linked to form artery segments.

In 1993, Liu et al. [78] developed a three-steps recursive tracing-based method to

construct 2-D vascular networks in angiograms. The first step is to segment vessels

starting from a starting point with a trace-based method using direction information.

Then the detected vessel pixels are deleted to preventing re-detection. The third

step is to detect all branch points along these vessels by applying matched filters

along both sides of the vessel. In 1996, Montesinos et al. [94] constructed trees by

performing local to global optimization of an active contour by dynamic programming

in 2-D medical and aerial images. In 2000, Yim et al. [95] combined an ordered region

growing (ORG) algorithm and a skeleton-based algorithm to generate the vascular tree

in magnetic resonance angiography (MRA). The image is represented by an acyclic

graph via the ORG algorithm based on the connectivities of voxels. A seed is provided

by a user to be the origin of the graph. Then the graph is skeletonized and vessel

segments are extracted by tracing paths from the ends of vessel segments back to the
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origin point. In 2002, Selle et al. [96] segmented hepatic vessels using a threshold-

based region-growing method on CT images, with the threshold value automatically

generated. The segmented vascular structure is skeletonized, and transformed into

a vascular forest that contains a number of directed acyclic graphs, using a graph

theoretical method. In 2002, Deschamps et al. [97] developed an algorithm that first

converts a 3-D MR image of aorta to a threshold vessel potential image and performs

perceptual grouping and contour completion. This fast marching algorithm identified

contours as minimal paths between connected components.

Both Jomier et al. [98] and Bullitt et al. [99] both performed grouping of

vessel segments using the minimum spanning tree algorithm in general 3-D image

modalities based on segmentation images, but with different minimization criteria.

Jomier used distance, angles, radius and radius ratio as features to classify junction

using Mahalanobis distance, while Bullitt used the linear distance and image intensity

as features as the cost for the minimum spanning tree. The problem is that the

construction of the vasculature tree is based on the vessel segmentation. If there are

errors in the segmentation procedure, they will compromise the performance of the

results.

Since the retinal images are 2-D images of the projection of 3-D object, overlap-

ping of different vessel trees occurs on the retinal fundus images, forming a complex

network. Therefore general methods mentioned above are not well-suited for con-

structing vasculatures in retinal images. Thus special methods that can distinguish

overlapping of vessels and normal bifurcations of vascular trees are needed. Among
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them, a number of methods have been developed to use the local knowledge of vessels

to construct the vascular trees by classifying landmarks of all kinds. Basically, these

methods first segment vessels using various approaches, then they locate potential

landmarks on the vessel segmentation. These landmarks are then further classified

into bifurcations, crossing points and ending points. By identifying the types of

landmarks, the vascular trees are constructed. Some methods also apply some post-

processing procedures to rectify some mistakes during the classification to improve

the accuracy.

Can et al. [76] developed a very simple method to extract bifurcations and

crossing points. The authors first use tracing-based algorithm to obtain vessel segmen-

tation. Then they reduce the segmented vessels to centerlines, and identify junctions

as centerline intersection points. Lines are constructed from the intersection point

to each of the segments, and are used to estimate the intersection angles and to dis-

tinguish branches and crossing points. Since it is very simple, this algorithm is only

able to solve simple branches and crossings with no more than 3-4 segments in close

proximity, but fails at complex junctions, where there are several vessel branches close

together, or where segmentation has failed.

Shen et al. [100] and Grisan et al. [101] propose similar tracing algorithms

to detect bifurcations and crossing points along the search of vessel points. The

drawback of this type of approach is that the successful detection of bifurcations

depends on the tracing algorithm. If the tracing algorithm fails to trace some vessel

pixels, some bifurcations might be missed.
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To obtain the properties of retinal vasculature, Martinez-Perez et al. [102] de-

veloped a semi-automatic method to build the retinal vasculature trees based on the

vessel segmentation image. They first skeletonize the segmentation image then iden-

tify three types of significant points: bifurcation points, crossing points and terminal

points. Then they track from every manually indicated root segment to iterate and

form a tree. However, this method requires human intervention to prevent from fail-

ure when cases such as the following happen: 1) two close bifurcations are recognized

as one cross point, 2) two vessels crossing at an acute angle cause the crossing point

to be recognized as two bifurcations. Besides, this method requires human indication

of arterial and venous vasculatures.

Bevilacqua et al. [103], Chanwimaluang et al. [104] and also Ardizzone et al.

[105] propose similar techniques to detect landmarks using the neighborhood informa-

tion of vessel centerline pixels after extracting a vessel centerline image. They both

apply a local 3 × 3 neighborhood to probe for branching points and crossovers. The

methods might work very well for the detection of bifurcation points, but sometimes

one crossing point would be mis-classified into two bifurcations.

Tsai et al. [106] propose a model-based method using this strategy which

iteratively traces the vessel centerline pixels using local neighborhood information,

and then distinguishes bifurcations using a mathematical model which incorporates

angle information.

Jung et al. [107] developed a method that first extracts vessel centerlines using

the neighborhood information, then locates landmarks by finding cross-perpendicular
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structures and Y-type structures within local neighborhoods. The drawback of this

method is that it might fail to identify bifurcations and crossing points. Similarly,

Bhuiyan et al. [108] used a classification method to segment the vessels and obtain

the vessel centerlines, then detect bifurcations based on the neighborhood of each

vessel centerline pixel.

Aibinu et al. [109] use a k-mean algorithm to segment vessels with intensity

information and then to obtain vessel skeleton. Then they use multi-scale windows

(3× 3 and 5× 5) to probe bifurcations and crossing points. Also they use a morpho-

logical dilation operation to merge near crossover points into one crossover point.

Calvo et al. [110] first segment vessels and use morphological processing to

repair gaps in vessel segmentation. Then they locate landmarks based on an extended

vessel skeleton. To classify these landmarks, they developed a two-step algorithm.

The first step is to use multi-sacle neighborhoods to distinguish bifurcations and

crossing points. The second step is to use topological analysis which mainly is the

distance between landmarks to modify some classification results.

Azzopardi et al. [111] developed COSFIRE (Combination Of Shifted Filter

Responses) filters to detect bifurcations based on vessel segmentation images. The

COSFIRE filters are built based on the responses of Gabor filter banks and their

relative locations and orientations with respect to points of interest in terms of blur

and shift parameters.

Fathi et al. [112] proposed a mathematical model-based approach to detect

landmarks based on vessel segmentation images. They used a local vessel pattern
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operator to detect vessel landmarks and then to measure vessel features like the ori-

entation, the width and the bifurcation angle. Then the vessel features are used to

re-validate the landmark types. However, these methods are based on vessel segmen-

tation images thus the errors in vessel segmentation would compromise the results.

Since there is no a perfect automatic vessel segmentation technique, the performance

of these methods are contolled by the vessel segmentation approaches.

Based on their previously-developed vessel segmentation method [90], Al-Diri

et al. [113] firstly locate vessel segment ends when vessels are traced, then organize

these ends into local sets, and then use self organization feature maps (SOFMs) to

model cost functions for the junctions in order to resolve the configuration of local

sets of segment ends, thus determining the network connectivity.

The main drawback of the methods mentioned above is that they intend to use

local vessel information to detect landmarks and determine the vessel connectivity,

depending on local and/or greedy decisions. Depending too much on local information

make these methods are susceptible to local errors, especially for an imperfect image

or an automated segmentation. Some of the following errors can easily happen for an

imperfect image: (a) a crossing point is misclassified as a bifurcation when one vessel

is missing or disconnected; (b) a missing part of vessels causes the disconnection of

the tree; (c) spurious vessels generate false bifurcations and crossings. In addition,

complex landmarks are hard to recognize with local knowledge, i.e. two overlapping

vessels which would be misclassified as one vessel, and two overlapping landmarks.

Although some methods have post-procedures to rectify these mistakes by checking
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a larger neighborhood, in essence it does not change the local or greedy nature of

these methods. Some of other methods are thus proposed which combine the global

property of the vasculature to help building the vascular trees.

Lin et al. [114] (2009) [115] (2010) [116] (2012) developed a tracing algorithm

combined a grouping method to build the vasculature tree. They first obtained a

likelihood ratio vesselness (LRV) image using a learning technique. Then they use

a tracing algorithm to obtain a set of disconnected vessel segments. A grouping

algorithm is then applied to re-connect these vessel segments to form trees. The

grouping algorithm iteratively connects ungrouped segments to grouped segments by

maximizing the continuity of the vessel using an extended Kalman filter.

Rothaus et al. [117] proposed a structure-based method given a pre-segmentation

image to separate arteries and veins. Based on a pre-segmentation image, they obtain

the skeletonized vessel segments and identify bifurcation crossing points. Then they

modeled the problem of labeling vessel segments arteries or veins as a satisfiability

problem and propagates the labels of vessels from some initial labels. However, man-

ual inputs are mandatory to determine the initial labels and more manual inputs are

required if there are some conflicts that cannot be resolved by the algorithm.

Very recently, Estrada et al. [118] proposed a semi-automatic graph-based

method to construct the retinal trees. They first semi-automatically extract a graph

representing the vasculature from a fundus image, then separate it into arterial and

venous trees by maximizing a likelihood of arterial and venous trees. Their experiment

shows a good result, but the trees are semi-automatically constructed and thus the
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method needs human efforts.

2.2.3 Separation of Vessels in Fundus Images into Arteries and Veins

One of the earliest work about the recognition of arteries and veins in retinal

images is proposed by Grisan et al. [119] in 2003. They propose to divide the

fundus image into four regions of interest and classify the blood vessels locally into

arteries and veins based on a feature vector consisting of color properties using an

unsupervised fuzzy clustering algorithm. Based on a tracking algorithm they obtain a

set of disconnected vessel segments. Then they partitioned a concentric zone around

the optic disc into quadrants and choose the five largest vessel segments within each

region to classify. However, this method might fail at some regions which do not

contain enough vessels to classify. Most importantly, this method only considers

local morphological information and does not identify connectivities between vessels,

which makes the error rate on secondary vessels much higher than that of the main

vessels.

Later, to facilitate the automated analysis of arteries and veins in retinal

images, a number of methods are proposed to distinguish the arterial and venous trees.

One typical strategy of these methods are to determine the vessel connectivity first,

then use machine learning methods to recognize arterial and venous trees [120, 121,

122, 123, 124]. For these methods, a vessel tracking algorithm [120, 123], or a graph-

based algorithm [121, 124] are first used to construct the trees by determining vessel

connectivities. Then different machine learning algorithms are used to extract the
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discriminating features of arteries and veins then to classify these trees into arteries

or veins. The main drawback of these methods is that the errors generated during

the tree construction would greatly compromise the final result of arterial and venous

tree construction.

Another typical strategy is to directly use machine learning methods to classify

arteries and veins [122, 125, 126, 127, 128], and then to measure these vessels without

determining the connectivity between arteries or veins since some of clinical properties

of arteries and veins do not require the connectivity information. However, since these

type of methods mainly use the local neighboring intensity and profile information to

distinguish arteries and veins, they are not very accurate to classify small vessels, as

well as vessels far away from the optic disc due to the increasing similarity between

arteries and veins. This technical disadvantage would not be severe for the case when

only major vessels are concerned in clinics, but it would compromise the results when

the complete vessel tree analysis is necessary.

2.2.4 The Retinal Vasculature Analysis

Changes of the retinal vasculature have been associated with many diseases,

disorders and health conditions, as described in section 2.1.3. To quantify and

measure these changes, features are designed and methods are developed to semi-

automatically or fully-automatically to collect these data from fundus photographs.

Common features are the vascular tortuosity (arteriolar and venular tortuosities) [129,

130, 131, 132], branching angle at bifurcations [45], arteriolar length-to-diameter ra-
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tio [44, 133], microvascular density [45, 46]. Besides these features, the retinal vessel

width is one of the most important features that ophthalmologists are evaluating on

the retinal vasculature, due to its strong association with many diseases mentioned

before.

The most widely used measurement to quantify the retinal vessel width are

central retinal artery equivalent (CRAE), central retinal vein equivalent (CRVE) and

artery/vein ratio (AVR). CRAE/CRVE is aimed to estimate the metric of real inter-

est, the diameters of the central retina artery and vein, which are invisible in ocular

imaging, yet are believed to be the real biomarker of many diseases. AVR is the ratio

of CRAE and CRVE. The concept of CRAE/CRVE was first introduced by Parr and

coworkers [134, 135] and it is based on the assumption that visible retinal vessels

originate from the central retinal artery and that all visible retinal veins flow to the

central retinal vein, and also that the widths of the branches of retinal vessels have

a specific mathematical relationship, called Murray’s law [136], in normal subjects.

Practically, the average widths of a subset of arterioles/venules around a concentric

zone centered on the optic disc are estimated, and they are converted to a single

number to approximate the width of the central artery/vein, thus the terms Central

Retinal Artery Equivalent and Central Retinal Vein Equivalent.

The approach was further improved by Hubbard [38] and Wong [137] and later

Knudtson [138] introduced a semi-automatic method called the revised Parr-Hubbard

formulas that facilitates the estimation, which use scaleless equations for conversion

and with a different selection strategy that only selects the six largest arteries and the
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six largest veins. Since them, based on these same assumptions, various types of fully

automatic methods have been developed to calculate CRAE/CRVE and AVR [120,

128], including one developed by our group [139].

Despite the wide application of CRAE/CRVE, the methods to calculate them

are somewhat subjective and sensitive to inter-observer variability. In both semi-

automated and fully automated versions, the decision of which vessels to include and

not include in the calculation is arbitrary. The criteria of inclusion might be too

specific thus introducing bias, or too general, thus introducing noise due to the mis-

classification of arteries and veins by semi-automatic or automatic algorithms. Also

it is ambiguous how to handle overlapping arteries and veins, which often happens in

the region close to the OD.
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CHAPTER 3
THE AUTOMATIC DETECTION OF RETINAL VESSEL BRANCH

3.1 Introduction

To construct anatomical vascular trees, one key component is to detect the

connectivity between vessel segments, which can be transfered to the problem of de-

tecting the important landmarks on the vessels. To complete this task, we developed

the optimal filter approach to detect bifurcations. The optimal filter approach [140] is

a formalized machine-learning approach that allows an unbiased, almost parameter-

less, automated system for object-background separation. Essentially the only input

it requires to build the object detector is a limited number of expert-marked exemplar

objects. The name of the optimal filters is derived from the function of the filters

that maximally represent positive samples in the feature space against negative sam-

ples. It has been compared to other filterbank-based approaches for the separation

of object and the background. Considering bifurcations as independent objects, we

can use this method to detect them. The work in this chapter is published in SPIE

Medical Imaging 2013 [141].

3.2 Methodology

In summary, the optimal filter framework consists of a training and a test

stage as shown in Fig. 3.1. During the training stage, a set of fundus images S with

expert-annotated bifurcations, indicated as in Fig. 3.2, is used to build the optimal

filters, and to implicitly or explicitly build the classifier. Internally the training set
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Figure 3.1: The framework of the optimal filter approach.

Figure 3.2: A color fundus image, with annotated bifurcations labeled by blue circles.

S is divided into two sets, S1 and S2. S1 is used to build the filter set F , while S2 is

used to perform feature selection on F , resulting in selected filter set F ′, from which

we form the feature space and generate reference points. Then a classifier is trained

to detect bifurcations for a fundus image in terms of generating a soft-labeled map

indicating the probability of every pixel being a bifurcation.

During the test stage, a probability map is generated for every test image
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Figure 3.3: Bifurcation samples (1st row), and in red (2nd row), green (3rd row) and

blue (4th row) channels.

in T , and the bifurcation probability map is then thresholded to determine where

the bifurcations are located, and the performance is evaluated and is compared to the

ground truth. To maintain generality and robustness, S1, S2 and T are representative

images from the real data that are kept entirely separated. The following parts

discuss the details of the developed framework, including the sample generation, filter

generation, bifurcation detection, feature selection, and the evaluation metric.

3.2.1 Sample Generation

By annotating the center of bifurcations in S1 and S2, we obtain bifurcation

samples as sub-images at a specific scale σ (measured in pixels). To achieve rotational

invariance, each sample is rotated by 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦.

In preliminary studies, we did not find an advantage in using a higher number of

orientations, though this may differ if the scales of the samples are different. To

obtain a consistent sample image pattern, a circular mask is superimposed on the
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rotated sample image to generate circular samples. In addition, we decompose the

sample images into red, green and blue channels (Fig. 3.3), and samples in these

channels are considered as independent sample sets.

3.2.2 Filter Generation

We use principal component analysis (PCA)[142] to generate the filter sets

which define the feature space. PCA is an orthogonal transformation converting the

original data into a new coordinate system so that they are represented by a small

number of linearly uncorrelated variables called principal components (PCs). In our

method, every bifurcation sample image is a single observation, and by applying PCA

on the samples set for each channel, the PCs we obtain can represent any instance

of that samples set. If we retain the first M PCs such that their cumulative variance

(CV) is the majority of the total variance, they could be used to approximate any

instance of bifurcations, and that is the reason they are called the optimal filters [140].

The optimal filters thus found span the multi-dimensional feature space into which

any image pixel can be projected.

Bifurcation samples extracted from S1 are projected into the initial feature

space by convolving them with these optimal filters for later usage. In particular,

bifurcation samples in training set S1 are projected into the feature space to form

the positive reference points. Likewise, non-bifurcations are randomly sampled in S1

and projected into the feature space to form the negative reference points. While all

features are computed here, in the trained algorithm, this is only done with those
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filters that span the final, low-dimension feature space, which results from the feature

selection (3.2.4).

3.2.3 Bifurcation Detection

Once we generate the feature space with reference points, a classifier is trained

for the detection of bifurcations. An image under detection is transferred into the

feature space by being convolved with filters so each pixel corresponds to a query

point in the feature space. A k-nearest neighbor (k-NN) algorithm is chosen here to

classify these query points. Soft classification is applied so the probability of the query

point p to be a bifurcation is n/k, where k is the number of neighbors considered and

n is the number of positive points among these neighbors.

3.2.4 Feature Selection

The dimension of the feature space is the number of filters (i.e. PCs). Since

the feature space is defined by the set of optimal filters, here features and filters are

interchangeable. For efficiency we apply feature selection to lower the dimension since

the initial feature space is a high-dimensional space. Here we adopt the Sequential

Forward Selection (SFS)[143] approach which starts with a candidate feature pool

and, for each iteration, selects out the best remaining feature according to a criterion,

until the maximum number of features is reached or the criterion value starts to

decline. The detailed flowchart of the feature selection process is summarized in

Fig. 3.4. Training set S2 is used to generate the probability maps using the method

described in Section 3.2.3. The probability maps are generated with selected filters
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Figure 3.4: The flowchart of feature selection.

every iteration. The criterion to guide the selection is the AUC for the ROC curve

for the whole set of probability maps, which will be explained later in section 3.2.5.

3.2.5 Evaluation

The metric to calculate the AUC is pixel-based. We define a bifurcation re-

gion with radius of R centered at every annotated bifurcation pixel. A bifurcation

probability map is thresholded to obtain a binary image. Every pixel P of the binary

image is decided as true positive (TP), false positive (FP), true negative (TN) or false
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negative (FN) depending on whether they fall within bifurcation regions or outside:

P =



TP if P is labeled and |P −B| < D

FP if P is labeled and |P −B| > D

TN if P is unlabeled and |P −B| > D

FN if P is unlabeled and |P −B| < D

(3.1)

Here D is the radius of the bifurcation region, and B is an annotated bifurcation

in the ground truth image. For n test images, n probability maps are generated

with selected filters. The n probability maps are thresholded with different values to

generate different pairs of specificities and sensitivities, so the overall ROC is plotted

and the AUC is calculated.

The data is highly skewed since the number of bifurcation pixels are small

compared to the number of the whole image pixels; thus the ROC is insensitive to

the change of specificity. For better discriminability of ROC, we weigh positive points

with a self-defined factor F larger than 1, which enhances the influence of positive

points so the ROC curve is more sensitive to changes of sensitivity and specificity.

Here we define F as 2 × (total No. of negative/total No. of positive)
1
2 . Assuming

there are n images used for evaluation, the metric giving the AUC for the probability

maps is outlined as follows:

• find the threshold values v0, v1, v2, ... vk for all probability maps

• for threshold value i = v0, ... vk

– threshold all probability maps and obtain thresholded imagesmi1, mi2,..min
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– compute TP, FP, TN and FN for mi1, mi2,..min

– sum all TP, FP, TN and FN together for all thresholded images

– calculate the sensitivity and specificity for threshold value i

• compute the AUC according to the pairs of sensitivity and specificity for all

threshold values.

3.3 Experiments and Results

The data we use are 80 retinal color images from 80 subjects, created by the

registration of 2 separate images per patients as described in detail in the reference[144].

The size of images is approximately 800 × 650 pixels in JPEG format. The numbers

of images in S1, S2 and T are 50, 10 and 20 respectively. To generate the ground

truth, the centers of bifurcations were manually annotated by a trained reviewer and

a retinal specialist reviewed the annotations for correctness.

Bifurcations are sampled at a scale σ of 25 × 25 pixels. In the training stage,

10 bifurcations are randomly sampled per image so that 500 samples are created

from S1, and rotating them in 8 directions results in 4000 samples in total. PCA was

applied separately on the samples in red, blue and green channels to generate the set

of optimal filters. Figre 3.5 shows the first 12 filters in three channels. In Fig.3.5, the

patterns complexity of the PCs increases as the index of the filter increases, which

justifies the fact the information of bifurcation samples are concentrated in the first

few number of PCs. Figre 3.6 shows the CV of PCs in three channels respectively.

It indicates that the CV in the blue channel has a slower increase compared to those
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Figure 3.5: First to 12th PCs in red channel (1st row), green channel (2nd row), and

blue channel (3rd row).

in the red and green channels, which is consistent with the fact that there is little

information but noise in the blue channel. Thus we only use PCs in red and green

channels as our optimal filters. We select the first 30 PCs of red and green channels

for feature selection since the cumulative variance of first 30 PCs in the two channels

is higher than 96%.

Two thousand non-bifurcation samples are randomly selected per training im-

age, generating a total of 100000 negative points in the feature space. Ten filters

were selected from the feature selection procedure to build a 10-D feature space. The

radius R of the bifurcation region is
√

41 according to the vessel width in images.

We use Approximate Nearest Neighbor (ANN)[145] to accelerate the k-NN classifier,

and test on images in T with k = 33. The metric we use to evaluate the results is

the same as we use in feature selection. The AUC is 0.883 and Figure 3.7 shows the

ROC curve.

Figure 3.8 is a visual example. Figre 3.8 (a) is the probability map of the
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Figure 3.6: CV in three channels with respect to the number of PCs.

Figure 3.7: The AUC is 0.883 for test images with 10 selected features.
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fundus image shown in Figre 3.2. Figre 3.8 (b) is a thresholded binary map indicating

bifurcations, overlapped with the fundus image. The white pixels are TPs, and black

pixels are FPs. As shown in the figure, our method can find most of the bifurcations

with few false positives. Most of the false positives occur within and near the optic

disc because of the similarity between the appearance of vessel pixels near or within

the optic disc and that of bifurcations. Another types of false positive happens at

crossing points, which are easily misclassified as two conjunctive bifurcations. Our

method also misses some of small bifurcations when the radius of the retinal vessel

is extremely small or with the absence of one vessel. The failures of detecting these

bifurcations might be because these bifurcations have different appearance compared

to normal bifurcations and the optimal filters cannot capture their morphological

characteristics.

3.4 Conclusion

In this chapter, an optimal filter-based retinal bifurcation detection method

is presented based on a limited number of annotated retinal images with exemplar

branch point samples. Compared to other methods, this approach requires little

directly morphological information about the target, and only has a few parameters:

the scale σ of the sample, the numbers of positive samples and negative samples, and

a classifier. Furthermore, the parameter scale σ might be eliminated if we adopt a

multi-scale approach, which would be the focus of our future work. In conclusion,

using the optimal filter framework, a method to automatically detect bifurcations of
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(a) (b)

Figure 3.8: An example of output. (a) The probability map (b) The binary map

overlapped with the original image. Bifurcations are labeled with circles, and white

pixels are TPs, and black pixels are FPs.

the retinal vasculature has been developed. It does not require feature extraction

with human design, thus it only needs very little expert contribution. This method

is tested on 20 fundus images, resulting in a general AUC of ROC curve of 0.883.
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CHAPTER 4
THE AUTOMATIC CONSTRUCTION OF ARTERIOVENOUS

VESSEL TREES IN FUNDUS PHOTOGRAPHS

4.1 Introduction

Since the retinal fundus image is a 2-D projection image of a 3-D structure,

the 3-D retinal tree-like vasculature is projected on a 2-D surface to form a com-

plex network. The purpose of the construction of vasculature is not only to identify

vessels, but most importantly to determine the actual connectivity between vessels

on the fundus images. As discussed in Section 2.2.2, the existing approaches for

the vascular construction usually depend on local and/or greedy decisions and are

correspondingly susceptible to local errors, especially for an imperfect image or an

automated segmentation. Some common errors that would happen for these methods

are: (a) the misclassification of a crossing point as a bifurcation when one vessel is

missing or disconnected; (b) the disconnection of the vascular tree due to a missing

part of a vessel; and (c) the identification of false bifurcations or crossing points due

to spurious vessels. In addition, complex landmarks are difficult to recognize with

local knowledge (e.g., two overlapping vessels which would be misclassified as one

thick vessel, and two overlapping landmarks).

In this chapter, a novel and more global framework is presented to build

the vasculature which tolerates errors introduced during imaging and image pre-

processing, specifically vessel detection or vessel segmentation. The developed method

takes a vessel segmentation as the input, and finds the actual connectivity between
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vessels to build the vasculature. The output of the algorithm is multiple vascular

trees in form of the vessel centerlines. We first introduce the procedures and basic

theories of this framework. Then we present the details of the construction of the cost

functions, which are essential to the framework. Then we present the experiments to

test the algorithm and results of the evaluation. Work in this chapter has been pub-

lished in Medical Image Computing and Computer-Assisted Intervention (MICCAI)

2013 [146] and SPIE Journal of Medical Imaging 2015 [147].

4.2 Methodology

In general, the developed framework consists of three main stages, summarized

in Figure 4.1. Taking a vessel segmentation as the input, in the first stage it generates

a vessel potential connectivity map (VPCM). A VPCM is an over-connected vessel

network consisting of vessel segments and the potential connectivity between them. In

the second stage, the VPCM is disambiguated into multiple anatomical trees with two

labels. The tree disambiguation problem is modeled as a constrained optimization

problem, and solved by using a special graph with a meta-heuristic optimization

algorithm. To separate the VPCM, both local and global costs are calculated on

the VPCM for the optimization problem. Finally in the third stage, these separated

anatomical trees, as well as independent trees, are classified into A/V trees using a

machine-learning method. The following text describes the details of the framework.
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1: VPCM Construction

VPCM

    Graph
Construction

     Vessel
Segmentation

 Solution 
Generation

False Vessel
   Removal

Skeletoni-
  zation

 Vessel
Partition

 A/V
Trees

Initial Neighbors
     Search

Large Neighborhood
   Construction

Vessel feature
  Extraction

Neighborhood Cost
   Calculation

      A/V
Classification

Overlapping
      Trees

VPCM

2: VPCM Separation

Independent
      Trees

3: AV Classification

Complex VPCM

Simple VPCM

Figure 4.1: The flowchart of the developed framework.

4.2.1 The Vessel Potential Connectivity Map

Before describing the algorithm, we first introduce the concept of a Vessel

Potential Connectivity Map (VPCM), which is an important notion of this method,

then explain every step to build a VPCM. A VPCM is a vessel network consisting

of partitioned vessel segments in terms of centerlines and their potential anatomical

neighbors. For a VPCM, each segment vi has two ends ep2i and ep2i+1, which are

connected to the ends of neighboring vessels. A neighborhood, denoted as Nk, is a set

of end points whose segments are connected on the VPCM. If end points eph, epg ∈ Nk,

then they are neighbors and segments that they belong to, vbh/2c and vbg/2c, are also

neighbors. The size of a neighborhood, denoted as |Nk|, is the number of segment

ends within Nk, or the number of segments connected within. An example is shown

in Figure 4.2. Figure 4.2(b) shows a set of vessel segments, and Figure 4.2(c) shows

the corresponding VPCM virtually. In this example, segment v0 has two indexed

ends ep0 and ep1, and ep1 has two neighbors ep2 and ep4. Altogether they form a

neighborhood N1 = {ep1, ep2, ep4}, and therefore segments v0, v1 and v2 are neighbors
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as well.

(a) (b)
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Figure 4.2: A VPCM example (only a portion of the image is shown). (a) The vessel

segmentation. (b) Vessel segments (end points in red). (c) The virtual VPCM.

Here two assumptions about the VPCM are introduced as the prerequisite of

the proposed method. The first is based on the property of the vasculature in 2-D

retinal images that arteries do not cross arteries and veins do not cross veins. With

this property, we assume that within each neighborhood, segments of the same

type are connected anatomically and segments of different types are not

connected anatomically. In other words, if two segments are of the same type in a

neighborhood, we assume that they are connected. If they are of different types, they

are not connected. Because of this constraint, for each neighborhood, determining the

anatomical connectivity between segments is equivalent to determine the types (artery

or vein) of the segments. The second assumption is that the anatomical connec-

tivity between segments is included within a neighborhood. It means that

to determine the anatomical connectivity between segments, we only need to check
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whether two segments within each neighborhood are anatomically connected or not.

In other words, it means that all neighborhoods cover all possible landmarks of the

vasculature. With these two assumptions, to build A/V trees, we only need to de-

termine the anatomical connectivities of segments (ends) within every neighborhood,

which is equivalent to determining the segment types within every neighborhood.

Neighborhoods cannot be too small which will violate the second assumption and

pre-exclude the true anatomical neighbors, and cannot be too large which will violate

the first assumption, and may cause two segments of the same type not anatomically

connected to be included within one neighborhood.

4.2.2 The Construction of VPCM

Assuming we have a vessel segmentation, either manually or automatically

generated, we first extract the vessel centerlines using a general skeletonization al-

gorithm [148], and then we separate the vessel skeleton into disconnected segments.

This is done by finding two ending pixels for each segment. First we check the 3× 3

neighborhood for all centerline pixels and classify them into normal points and special

points. Normal points are centerline pixels which have 2 neighboring centerline pixels;

special points are centerline pixels which have either 1 or more than 2 neighboring

centerline pixels. Then, we divide the centerlines into segments by finding pairs of

special points. The details are referred in Appendix A, since it is less relevant to the

main algorithm in the work.

After separating the skeleton into segments, we over-connect them to build
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the VPCM in two steps. The first step is to initially find neighboring segments for

both end points of each segment in a small region. The shape and direction of the

region is defined as shown in Figure 4.3. For an end point of ep2i from segment vi (red

pixel in Figure 4.3), if there is an end point epm from other segment vbm/2c within its

search region (dark gray pixels in Figure 4.3), epm is connected with ep2i and vbm/2c

is a neighbor of vi.

(a)

(b)

Figure 4.3: Two types of search region, which are shown in dark gray and the end

point is in red and vessel centerlines in white. (a) The vessel direction is in either

horizontal or vertical direction. (b) The vessel direction is in a diagonal direction.

After the initial neighborhood construction, short isolated segments less than

12 pixels are removed because the majority of them are false positives, and the rest

are of little clinical significance.

Meanwhile, the centers of the optic disc and the fovea (if there is one) are

detected for later usage of further neighbor searching. Here a pixel-based classification
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algorithm is developed based on the work of Niemeijer et al. [149]. A circular template

(Figure 4.4) that iterates over all pixels is designed to extract features. The template

is separated as four quadrants, as well as the inner and the outer sections, with radius

Rt = 45. The features for the OD and fovea are calculated based on different regions

of the template, listed in Table 4.1. Samples points are obtained in 50 images for

both the OD and the fovea. Two SVM classifiers are trained separately for the OD

and the fovea detection. The algorithm generates an OD probability map and a fovea

probability map, which are thresholded to binary images. Then the largest connected

components are selected out in the binary images, and the geometrical centers are

the center of the OD and the fovea. In addition, because the vessels within the OD

is difficult to detect and trivial due to their messiness, the OD is masked out by

approximating the radius of the OD, based on the assumption that the OD is in a

circular shape. Assuming the images are processed under a similar scale, the radius of

the OD is considered as a number between between 40 and 90 pixels, and maximizing

the overlapping edge responses from the Gaussian-derivative-filtered OD probability

map over the size of the OD.

The next step is to find additional potential neighbors for vessel segments in

a larger region using a two-step algorithm. The first step is to explore neighbors for

segment ends having no neighbors by artificially extending the segment. The exten-

sion is defined as a region theoretically similar to a circular sector whose radius is r

and central angle is θ = 30◦. Figure 4.5(a) shows the shape in the continuous domain,

and Figure 4.5(b) shows the shape in the digital image domain. The extension region
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Figure 4.4: The template with two forms of region separation. (a) The template with

four quadrants. (b) The template with inner and outer sections.

Table 4.1: Feature summary for the detection of OD and the fovea.

Feature No. Feature Description for OD for fovea

1-4 The number of vessels pixels in four quadrants ∗

5-8 The average width of vessels in four quadrants ∗

9 The number of vessel pixels in the whole template ∗ ∗

10-15
The mean and std. of intensities in
R,G,B channels in the inner section

∗ ∗

16-21
The mean and std. of intensities in
R,G,B channels in the outer section

∗

22-25
The average of the orientation of vessel

segments on the border of the four quadrants
∗ ∗

26-29
The number of vessel segments going through

the border of the four quadrants
∗
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is iteratively grown by increasing r until a neighboring segment is found, or r reaches

a limit rl. Here rl (Eq. (4.1)) is determined by a function of the vessel length l, the

vessel tortuosity t [150], and an arc weight ra (Eq. (4.2)):

rl =



a/t+ ra if l < la

(a+ 0.1× (l − la))/t+ ra if la ≤ l < lb

b/t+ ra if lb ≤ l

(4.1)

ra =


0 if da > 30

1000 cos3 δ/da otherwise

(4.2)

In our experiment, a = 8, b = 10.4, la = 16, lb = 40. The arc weight encourages

segment ends that are near and aligned with major vessels to have a greater maximum

extension. The major vessels are the two largest vessels on a fundus image. They are

obtained by downsampling the vessel segmentation, thresholding and skeletonizing it,

and then finding the two largest connected components. Then these two major vessel

arcs are represented by 2nd degree curves (Figure 4.6). In the arc weight equation

given by Eq. 4.2 above, da is the nearest distance between a segment end and an arc

and δ is the angle between the direction of the segment end and the tangent line of

the nearest point on the arc.

The extension region finds a neighbor using Algorithm 4.1. Examples of the

extension region with different connection cases are shown in Figure 4.7.

The second step is to merge close neighborhoods. A boundary is defined for
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Figure 4.5: The shape of the extension region.

Figure 4.6: An example of downsampled vessel segmentation with major vessel arcs

in red.
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Algorithm 4.1 The algorithm to link neighboring segments

for each end epj which has no neighbors do

while epj has no neighbor and r < rl do

increase r and construct the region Rj

if Rj meets an end point epk of another segment then

connect epj to epk and epk’s neighbors if there are any (Fig. 4.7 (a))

else if Rj meets a vessel centerline p then

break vessel at p into two segments, which generates two new end points epl

and epm, form epj, epl and epm as a neighborhood (Fig. 4.7 (b))

else if Rj meets another extension Rk from end epk then

connect epj to epk and epk’s neighbors if there are any (Fig. 4.7 (c))

end if

end while

end for

(a) (b) (c)

Figure 4.7: First row: Three different cases of finding a neighbor. Second row: The

corresponding neighborhood constructed.
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each neighborhood Nk, and a neighborhood will merge with others if their boundaries

contact. The boundary is a polygon whose shape is defined according to |Nk|.

When |Nk| = 1, the boundary is an extending segment of length lx = rl from

the vessel end.

When |Nk| = 2, the boundary is a quadrangle (see Figure 4.8(a)). Two of

the crests P1 and P2 of the quadrangle are on the segments whose distance to their

respective end points is d, which is controlled by the width of the two segments.

Another two crests P3 and P4 are defined using Eq. (4.3), where θ is the angle between

the directions of the two segments; r is a constant, which is set as 7 in our experiment;

d1 and d2 are the directions of the two segments. C is the centroid of epi and epj.

P3 = C + r(cos θ + 1)d

P4 = C − 0.5r(cos θ + 1)d

where, C = epi + epj,d =
d1 + d2

|d1 + d2|

(4.3)

An example of the boundary on the image domain is shown in Figure 4.8(b) and

Figure 4.8(c).

When |Nk| = 3, the boundary is a triangle. The three crests of the triangle

are on the segments whose distances to their respective end points are di. Assume

θ1, θ2 and θ3 are the three angles between directions of segments in a neighborhood.

If they are all larger than 110◦, di = 3 (see Figure 4.9(a)); Otherwise, di = 3 for

segments whose directions form the smallest angle, and di = r3 cos θmin, where r3 is

a constant, which is set as 12 in our experiment, and θmin is the smallest angle (see

Figure 4.9(c)). An example of each of the cases in actual digital image space is shown



www.manaraa.com

56

1d 2d

3P

4P

2P1P
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Figure 4.8: The boundary illustration for neighborhood with size of 2. (a) The

theoretical geometry of the boundary. (b) The vessel segments with two 2-pt neigh-

borhoods in the center. (c) The corresponding boundaries shown in yellow.

in Figure 4.9(b) and Figure 4.9(d).

When |Nk| > 3, the boundary is a polygon whose vertices are the vessel

pixels pi such that |pi − vi| = 3, where vi ∈ Nk. Examples of the boundaries for

neighborhoods with different sizes is shown in Figure 4.10.

We also limit the size of neighborhoods smaller than 7, based on the obser-

vation that the overlapping of three landmarks (bifurcations or crossing points) is

extremely rare. Therefore if a merged neighborhood is larger than 6, we undo the

merge. When neighborhoods are merged, if both ends of a segment are within the

new neighborhood, the segment is removed.

After the construction of neighborhoods, a VPCM is complete which presents

the vessel segments and their potential neighbors in term of local neighborhoods.

Figure 4.11 (e) shows vessels and their neighborhoods before the merge; Figure 4.11 (f)

shows them after the merge. The regions in the red circles show three separate
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Figure 4.9: The boundary illustration for neighborhood with size of 3. (a) The first

case of boundary construction on theoretical geometric domain. (b) An example of

the boundary on the image domain for the first case. (c) The second case of boundary

construction on theoretical geometric domain. (d) An example of the boundary on

image domain for the second case.

Figure 4.10: Examples of the boundary for neighborhoods with size of 4, 5 and 6

respectively.
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neighborhoods, and the corresponding merged 5-pt neighborhood in the final VPCM.

(a) (b) (c)

(d) (e) (f)

Figure 4.11: The construction of VPCM. (a) A portion of fundus image. (b) The

vessel segmentation. (c) The vessel skeleton with likely false positive removed. (d)

The vessel segments with their extensions in green. (e) The VPCM before the merging

of neighborhoods (neighborhoods indicated with yellow boundaries. The enlarged in

red circle shows 3 neighborhoods.) (f) The final VPCM (The enlarged in red circle

shows 1 neighborhood).
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4.2.3 The Separation of the VPCM

4.2.3.1 The Optimization Problem

After we obtain the VPCM, the next stage is to disambiguate this over-

connected vessel network into multiple trees with binary labels by finding the true

anatomical connectivity between segments. As explained in the beginning of Sec-

tion 4.2.1, with the two properties of the VPCM, determining the anatomical connec-

tivity within each neighborhood is equivalent to determining the segment types. Here

we define a configuration of a neighborhood as a combination of connectivity between

segments within the neighborhood, or a combination of segment labels within it, due

to the actual equivalence of these two terms. In practice, a neighborhood is a poten-

tial landmark, and the configuration is a possible landmark type (i.e., a bifurcation,

a crossing point or others).

For each neighborhood, we can locally determine their possible configurations

but it is difficult to determine exactly which one is the correct one with only local

information. Figure 4.12 shows neighborhoods of size 4 and 5, with some valid po-

tential configurations, and their retinal image equivalents, which shows the difficulty

of determining the exact types with local information. However, the global prop-

erty of the retinal vasculature constrains the choices of the potential configurations;

thus we determine types of all landmarks simultaneously using both local and global

information. Let ~L denote the labels for all segments in a VPCM. The problem of

separating the VPCM is to determine ~L that minimizes Eq. (4.4) with an additional

global constraint that the constructed trees contain no cycles. Here a cycle is a set of
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connected segments starting and ending at the same segment, with no repetition of

other segments.

(a) (b) (c) (d) (e)

Figure 4.12: (a) Neighborhoods of size 4 and 5. (b)-(d) Possible configurations. (e)

The retinal image parts.

E(~L) =
K−1∑
k=0

EN (~lNk) + βF (G) , (4.4)

where EN (~lNk) =
1

P (~lNk |Nk, ANk)
(4.5)

The first term of Eq. (4.4) represents the configuration cost for all neighbor-

hoods, and thus is the local cost. Let li reflect the label of segment vi (li ∈ [0, 1],

li = l(vi) = l(ep2i) = l(ep2i+1)), then ~lNk represents the configuration, or the segment

labels for the neighborhood Nk. The second term of Eq. (4.4) is a weighted global

term which evaluates the topological properties of constructed trees G after segment

labels are determined.
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For each neighborhood there are multiple possible configurations, and the cor-

responding cost is computed generally as the reciprocal of its probability, expressed

in a general matrix as ANk in Eq. (4.5). While we keep the general form of the terms

here for describing the overall algorithm, we present the details of how to compute

P (~lNk |Nk, ANk) and F (G) in Section 4.2.4.

The optimization model is designed not only to choose the best configurations

from all possible configurations in a local point of view (the first term), but also to

obey the global property of the retinal vasculature (the second term and the global

constraint). To solve this problem, we divide the VPCM for an image into several

independent sub-VPCMs to solve them individually, without loss of generality. Since

the OD is masked out, separation into sub-VPCMs is easily done with breadth-

first search (BFS). Small sub-VPCMs which are far away from the OD (i.e., trees

with fewer than 40 centerline pixels and for which the nearest distance to the OD is

larger than than twice of the OD radius) are removed from further analysis due to

their insignificance in clinics. The difficulty of the optimization problem stems from

the global constraint, which is related to the complexity of a VPCM, and thus we

categorize VPCMs into three types:

• A simple VPCM: a VPCM which has one segment (see Figure 4.13(b)).

• An acyclic VPCM: a VPCM which has more than one segment, but without

cycles (see Figure 4.13(c)).

• A cyclic VPCM: a VPCM which has one or more cycles (see Figure 4.13(d)).

The simple VPCM is only a single segment so we only need to focus on the
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other two, altogether referred as complex VPCMs. Because of the difficulty of this

problem with cyclic VPCMs, we design a graph-based algorithm to approximate an

optimal solution. We first transfer a complex VPCM into a special graph which

incorporates the global constraint, and we use it to find candidate solutions with low

costs of the first term of Eq. (4.4). These candidate solutions are then evaluated to

generate the final solution by combining the global cost F (G), which is the second

term of Eq. (4.4).

(a) (b) (c) (d)

Figure 4.13: (a) Independent VPCMs in different colors. (b) Simple VPCMs in

different colors. (c) Acyclic VPCMs in different colors. (d) Cyclic VPCMs in different

colors (All centerlines are thickened for better visualization).

4.2.3.2 The Graph Model

In the proposed graph model, each vertex ni represents a segment vi, and each

edge eij represents a relation between segments vi and vj within a neighborhood. For
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each neighborhood, with |N | = n, n− 1 edges are built to connect the n vertices as

a linear tree such that the starting and ending vertices have degree of 1, and other

interior vertices have degree of 2. Here the concept of a cluster Ck is introduced

in the graph corresponding to the neighborhood Nk on the VPCM, which is a set

of edges generated by the vessel ends within one neighborhood. If in the image

domain, epi, epj ∈ Nk, and there is an edge eij constructed in graph domain, then

ebi/2cbj/2c ∈ Ck. Figure 4.14(a) shows an example of how a 3-pt N and a 4-pt N are

transformed to clusters in the graph domain respectively. Using this cluster-based

transformation, a VPCM is transferred into a planar graph. Figure 4.14(b) shows

a virtual VPCM with four neighborhoods transferred to a graph. In this example,

four neighborhoods in the image domain correspond to the four clusters in the graph,

whose edges are labeled in different colors. Figure 4.15 shows the transferred graph

from the VPCM in Figure 4.11.
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Figure 4.14: (a) Neighborhoods transferred into clusters. (b) A graph transferred

from the VPCM in Figure 4.2.
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Figure 4.15: (a) The VPCM from Figure 4.11. (b) The corresponding graph.

In the graph, each vertex needs to be labeled in one of two colors, corresponding

to a vessel segment being assigned one of two types; each edge is associated with one

of two constraints: equality or inequality, which simulates the connectivity between

segments on image domain. The equality constraint dictates the two vertices con-

nected by the edge must be in the same color; the inequality constraint dictates they

must be in different colors. Within each cluster, a combination of edge constraints

is equivalent to a two-color scheme on vertices, which corresponds to a configuration

for the neighborhood. Also the costs of configurations for each neighborhood are

attached to the corresponding combinations of edge constraints for clusters.

Corresponding to the VPCM, vertex labelings and edge constraints for one

cluster is mutually inferable. Figure 4.16 shows the cluster and its edge constraints

and vertex labelings, corresponding to the neighborhood of size 4 in Figure 4.12.
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Specifically, Figure 4.16(a) shows the segments with local indexes and Figure 4.16(b)

shows its corresponding cluster. Figure 4.16(c)-(e) show the three configurations in

the graph corresponding to those on the VPCM. Figure 4.16(c) indicates v0 and v2

are the same type and thus connected, v1 and v3 are the other type, meaning the

neighborhood represents a crossing point. Figure 4.16(d) indicates v0 and v1 are the

same type thus connected, v2 and v3 are the other type, meaning the neighborhood

represents the case of two vessels being close. Figure 4.16(e) indicates v0, v1 and v2

are the same type and connected, v3 is another type and disconnected with them,

meaning v0 v1 and v2 form a bifurcation, and v3 is falsely connected to it.

1v

3v 2v
0v

3n

0n
2n

1n ≠≠

≠

= ≠

= ≠

= ≠

(a) (b) (c) (d) (e)

Figure 4.16: (a) The neighborhood with local indexes of segments. (b) The cluster. (c)

- (e) Three configurations corresponding to three landmark types for the neighborhood

of size 4 in Figure 4.12.

By this transformation, the optimization problem in the VPCM then can be

transferred on the graph to the following problem: find a combination of edge con-

straints for each cluster, which also equals to the vertex color assignment, under three
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conditions, and meanwhile have the minimal cost in Eq. (4.4). The three conditions

are:

1. The number of inequality edges on each cycle must be even.

2. The number of inequality edges on each cycle must be larger than zero.

3. The inequality edges on each cycle cannot come only from one cluster.

Here a cycle on the graph is a set of connected vertices starting and ending

at the same vertex, and without repetition of other vertices. The first condition

guarantees that there is a feasible edge assignment on the graph such that vertices

can be colored using two colors. The second and third conditions guarantee that the

solution on the graph can be transferred to a feasible solution in the VPCM, which

are multiple trees with binary labels.

We define a conflict cycle when the edges on the cycle violate any of the three

conditions, and a solution on the graph without a conflict cycle as a feasible solution,

and a solution with conflict cycles as an infeasible solution. To find the optimal

solution, besides the feasibility, we also need the cost in Eq. (4.4) to be minimal.

Due to the difficulty of this problem when there are cycles in the graph, we

propose a meta-heuristic algorithm to find a near-globally optimal solution, illustrated

in Figure 4.17. Meta-heuristic algorithms are a type of common algorithms in the

optimization field which give a near-optimal solution for difficult problems within

a reasonable amount of time. The first step of the algorithm is to find a set of

feasible candidate solutions with low costs of the first term of Eq. (4.4). Then these

candidate solutions are evaluated with the second term of Eq. (4.4) and the one
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with the minimum cost of Eq. (4.4) is the final solution. At the first step, we develop

different algorithms to generate the candidate solutions depending on whether a graph

has cycles or not. If there is no cycle, which only happens when the graph is small, all

solutions are feasible; thus we consider all solutions as candidate solutions. If there

is at least one cycle, which is the core of the problem, we use a heuristic algorithm

to generate feasible solutions with low costs of the first term of Eq. (4.4), which is

explained in detail in the following section.

Candidate
 Solutions  Final solution

(Vascular trees)
Solution Search
in Image Domain

Graph
 Has
Cycle

No

Yes

Configurations and Costs

second term of (2)Meta-heuristic
  Algorithm

   Permutate
Configurations

Configurations and Costs

Figure 4.17: A concise flowchart of the meta-heuristic algorithm.

4.2.3.3 The Heuristic Algorithm

Here we denote a solution on the graph domain i.e., the choices of edge con-

straints, as s. As is common in many meta-heuristic algorithms, the overall idea is

to maintain a candidate solution pool, with candidate solutions generated as in Al-

gorithm 4.2. If there are conflict cycles, the algorithm permutes the edge constraints
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to reduce them. The solution pool is updated during every conflict cycle reduction to

reduce at least one conflict cycle. The algorithm stops when enough feasible solutions

are generated, or the iteration number reaches the maximum limit.

To avoid the trap of local optima, we generate different seed solutions to feed

into Algorithm 4.2. Seed solutions are generated from the solution with the lowest

local cost, which might not be feasible in most cases, with random permutation of

configurations of random clusters. For each seed solution, Algorithm 4.2 outputs a

pool of candidate solutions, and the final candidates are the union of all pools.

For Algorithm 4.2, it starts from a seed solution, and checks for conflict cycles

first. This is done by detecting a cycle basis first and then checking each cycle of

the basis. A cycle basis is a minimal set of cycles that any cycle can be written

as a union of the cycles in the basis [151]. A cycle basis is found using BFS, and

the conflict cycles are detected by checking the three conditions in Section 4.2.3.2

(implemented as FindConflictCycle(s, B) in Algorithm 4.2). If a solution contains

conflict cycles, the algorithm randomly chooses a conflict cycle to resolve. If there

are adjacent conflict cycles, they have a higher priority to be chosen.

Within Algorithm 4.2, permutateEdgeConstraint(s, C, m) (Algorithm 4.3) is

the component to permute the edge constraints of clusters to remove conflict cycles,

and to generate offspring solutions. The algorithm iterates edges on the conflict

cycle and finds their corresponding clusters. All the potential configurations of these

clusters are sorted based on their costs. A random Gaussian noise is added during the

sorting to enlarge the search region and prevent being trapped in local minima. The
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Algorithm 4.2 Algorithm for finding candidate solutions, given a graph G with cycle

basis B, l (number of feasible solutions required), m, initial sol t, and iter (maximum

iteration number)

Initialize sol pool S with t, initialize feasible sol pool F ← Ø

while |F | < l & i < iter do

Initialize sol pool S ′

for each solution s ∈ S do

C ← FindConflictCycle(s, B)

if |C| = 0 then

put s into F if s 6∈ F

else

sol pool N ← permutateEdgeConstraint(s, C, m) (see Algorithm 4.3)

for each solution n in N do

put n in F if it is feasible; otherwise put n in S ′ if n 6∈ S ′

end for

end if

end for

S ′ ← S ′, i← i+ 1

end while

if |F| = 0 then

F ← S ′

end if

return F
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algorithm starts by changing the configuration based on their costs one at a time, and

proceeds to check if the number of conflict cycles are reduced. Here m is the number

of offspring required, and j controls the relaxation of the cycle reducing criteria. If

there are only a couple of solutions with less cycles, this indicates that the algorithm

might meet a local minimum. To escape from the local minimum and increase the

search space, the algorithm needs to generate offspring that have more cycles than

the current solution.

When Algorithm 4.2 cannot generate enough feasible solutions, it stops when

the iteration number hits the limit. In an extreme case, there might not be feasible

solutions. This might happen when there are false vessels in the VPCM that form a

false cycle, or when vessels of the same type form a cycle mistakenly in the fundus

images. In these cases the algorithm generates the most favorable infeasible solutions,

which are solutions with the least number of cycles and lower costs.

Besides the algorithm designed for the normal case, we also propose a back-up

algorithm for abnormal cases when Algorithm 4.2 fails to find a feasible solution.

This would happen when some assumptions of the VPCM are violated during the

construction. For example when there are false vessels in the VPCM, a cycle might

be inevitable in the vasculature, thus in the graph. Also if a neighborhood is over-

expanded, it might include vessels with the same type that should not be connected

anatomically. If these cases happen, the retinal vasculatures generated inevitably

contain cycles, which cannot be considered as trees. To deal with the inevitability

of infeasible solution on the graph, a back-up algorithm is proposed based on Algo-
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Algorithm 4.3 permutateEdgeConstraint given s, C, m

Initialize sol pool S ← Ø, i← 0

while |S| < m do

c ← CycleSelection(C)

find clusters on c, k ← 0, l← 0

for j ← 0; j < m/|C| do

select a configuration config based on costs added with random noise

s′ ← UpdateSolution(s, config)

C ′ ← FindConflictCycle(s′, B)

if C ′ = C or |C ′| ≥ |C|+ l then

disregard s′, k ← k + 1

else

put s′ in S if s 6∈ S

j ← j + 1, k ← 0

end if

if k ≥ |m| then

k ← 0, l← l + 1

end if

end for

i← i+ 1

end while

return S
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rithm 4.2 which tolerates the conflict cycles in the graph. The back-up algorithm is

summarized in Algorithm 4.4. Basically we modify Algorithm 4.2 to allow the final

solution having a certain number of conflict cycles, which is controlled by the param-

eter lc. The backup algorithm (Algorithm 4.4) takes this modified Algorithm 4.2 as

a kernel to generate a pool of solutions. If there is no solution generated, the the

parameter lc is iteratively increased until there are solutions generated.

Algorithm 4.4 Back-up algorithm to generate solutions, given a graph G with cycle

basis B, l (number of feasible solutions required), m, initial sol t, and iter (maximum

iteration number)

initialize feasible sol pool F ← Ø

while |F | < 1 do

F ← GenerateSolutionPool(G, B, l, m, t, iter, lc)(Algo. 4.5)

lc ← lc + 1

end while

return F

4.2.4 Cost Function Design

The costs represented by Eq. (4.4) is essential for the proposed algorithm. The

first term reflects the costs of various possible configurations for each neighborhood,

which are calculated by using local vessel features and some global features. The
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Algorithm 4.5 GenerateSolutionPool, given a graph G with cycle basis B, l (number

of feasible solutions required), m, initial sol t, and iter (maximum iteration number),

conflict cycle limit lc

Initialize sol pool S with t, initialize feasible sol pool F ← Ø

while |F | < l & i < iter do

Initialize sol pool S ′

for each solution s ∈ S do

C ← FindConflictCycle(s, B)

if |C| ≤ lc then

put s into F if s 6∈ F

else

sol pool N ← permutateEdgeConstraint(s, C, m)(Algo. 4.3)

for each solution n in N do

put n in F if it is feasible; otherwise put n in S ′

end for

end if

end for

S ′ ← S ′, i← i+ 1

end while

return F
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second term reflects the costs of the constructed trees, which is calculated after the

candidate trees are generated.

4.2.4.1 Feature Extraction

First we introduce the types of vessel features which are used to calculate the

costs, which are:

• the vessel end point direction,

• the vessel width,

• the vessel profile intensities, and

• the vessel dominant orientation.

The vessel end point direction is a pair of directions along the segment at both

end points, with the positive direction being away from the segment, represented as

a pair of unit vectors. Principal Component Analysis (PCA) is used to calculate the

direction with the first n = 15 pixels starting from each end of the segment.

The feature of vessel width includes the absolute width and the relative width,

which are the average vessel width of a segment and its relative average width com-

pared to others. The absolute width is calculated using Xu’s method [152] and the

relative width is a 4-scale integer representing the vessel width compared to the quar-

tiles of the vessel widths from the whole image.

The vessel profile intensities are a set of average intensities along the vessel

cross section on a set of color channels. To reduce the effect of potential errors intro-

duced during the measurement of vessel width, we use the average intensity within
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the center half of the vessel width. Intensities are collected in six channels, including

red, green and blue in RGB, intensity channel (I) in HSI, and L and b channels in

Lab space. Before the calculation, to remove the luminance imbalance, single-channel

images are subtracted by their background images and then normalized. The back-

ground image is obtained by filtering the original image with a large mean filter. An

example of the balanced images is shown in Figure 4.18, and for the fundus image in

Figure 4.20.

The vessel dominant orientation is the expected direction of the blood flowing

via a vessel segment, based on its geometric and topological properties. Although the

blood flows in reversed directions in arteries and veins, for the purpose of this feature,

we define all dominant orientations using an arterial convention where blood flows

from the OD to the periphery of an image and the fovea. A binary status flowi is

attached to each segment vi, representing if the dominant orientation is determined

for vi or not. Appendix B contains the details of the computations to determine the

vessel dominant orientation. Then the dominant orientation feature is transferred

to the end point level by giving one of three labels to each point: head (h), tail (t)

or unknown (u). These labels of end points are used to calculate costs for potential

configurations of each neighborhood. If the dominant orientation is determined for

vi, its end points are labeled as a h and a t, representing the head and the tail of

vi. The head and the tail for a segment are determined in a way that blood flows

from the tail to the head. If the dominant orientation cannot be determined, both

end points are labeled as u, which means end points are unknown. In the following,
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head, tail and unknown are indicated by the symbols h, t and u respectively. With

this rule and the two assumptions about the neighborhood defined at the beginning

of Section 4.2, some constraints can be inferred within each neighborhood:

• For any neighborhoods, blood cannot flow from a h to another h.

• For any neighborhoods larger than 2, there must be at least one h and at most

2 h.

Figure 4.18: First row: images in R, G, B, I, L and b channels. Second row: images

after the imbalance removal and intensity normalization.

4.2.4.2 Configurations and Costs of Local Neighborhoods

A configuration for a neighborhood, denoted as φ, represents the separation

of end points within the neighborhood into two categories. Denoting all the possible

configurations for a neighborhood as |Φ|, and the number of neighborhoods in a

VPCM as l, then the solution space is O(|Φ|l). It is very expensive to locate the
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optima in such a big space thus we shrink the solution space by decreasing |Φ|.

Logically |Φ| = 2|Nk|−1, with the constraint that 1 < |Nk| < 7. however when

|Nk| > 3, many configurations can be pre-excluded by checking the labels of end

points. Specifically when |Nk| = 5, we require that there must be 2 heads and 3 tails;

when |Nk| = 6, there must be 2 heads and 4 tails. With the constraints that heads

have to be separated, and 1 head cannot connect to more than 3 tails, when |Nk| = 5,

|Φ| = 8; and when |Nk| = 6, |Φ| = 14. Then the probabilities or costs of all possible

configurations are calculated using different algorithms designed for neighborhoods

of different sizes using features explained in Section 4.2.4.1.

First, for better description, we use the labels of end points to denote the

members of one neighborhood. For example, a neighborhood with one head, two

tails, and one unknown is denoted as Nk = {h, t1, t2, u}. And a configuration is

denoted as a subset of connected end points. So in the case of Nk = {h, t1, t2, u}, a

configuration of the head being connected with both tails is denoted as φ = {h, t1, t2}.

And due to the duality of the connection or the labels, it can also be expressed using

the complementary subset, thus φ = {h, t1, t2} = {u}.

When |Nk| = 2, there are two configurations, two end points are either con-

nected, or disconnected. The vessel dominant orientation and the vessel end point

direction are used to determine the costs of them. First, if both end points are heads

or tails, there is only one configuration, that they are disconnected, and the cost is

set to be an extremely small number, here −3.0; Otherwise, end point directions are

used to determine the configurations and costs. The cost of them being connected
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is calculated by Eq. (4.6) and the cost of them being disconnected is calculated by

Eq. (4.7), where o1 and o2 are the directions of the two end points.

c0 = −0.1× (1− cosα + 1

2
) (4.6)

c1 = −0.1× cosα + 1

2
(4.7)

where, cosα =
o1 · o2

|o1| · |o2|
(4.8)

When |Nk| = 3, there are four potential configurations logically. Here vessel

dominant orientations and end point directions are used. Specifically after the de-

termination of vessel dominant orientations, there are only three cases of how many

heads, tails or unknowns in the neighborhoods, and different algorithms are designed

to generate possible configurations and corresponding costs.

1. For the case of one head and two tails (Nk = {h, t1, t2}): we limit the potential

configurations to only three cases, Φ = {φ1, φ2, φ3}, where φ1 = {h, t1, t2},

φ2 = {h, t1} and φ3 = {h, t2}. The costs are calculated using the end point

direction vectors. For φ2 and φ3, their costs are the cosines of the angles between

the direction vectors of two connected end points. For φ1, the cost is the sum

of the two cosines of the angles between the direction vectors of the head and

two tails.

2. For the case of two heads and one tail (Nk = {h1, h2, t}): we limit the potential

configurations to only two cases. Φ = {φ1, φ2}, where φ1 = {h1, t}, φ2 = {h2, t}.

The costs for φ1 and φ2 are the cosines of the angles between the directions of
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two connected end points.

3. For the case of one head, one tail and one unknown (Nk = {h, t, u}): four cases

are allowed, Φ = {φ1, φ2, φ3, φ4}, where φ1 = {h, t, u}, φ2 = {h, t}, φ3 = {h, u}

and φ4 = {u, t}. The costs for φ2, φ3 and φ4 are the cosines of the angles

between the directions of two connected end points. For φ1, the cost is the sum

of the two cosines of the angles between the direction vectors of the head and

the tail, and the head and the unknown.

We next introduce how to calculate the costs for configurations when |Nk| =

5, 6 (the costs for |Nk| = 4 will be discussed last). When |Nk| = 5, 6, since there are

2 heads and the rest are tails, the same strategy is adapted. For all the configura-

tions, three types of costs are calculated independently using the vessel width, profile

intensities and end point directions respectively, denoted as Pw, Pi and Pd. Then they

are combined together to obtain the final cost Pφ. Specifically, it is the negative of

the multiplication of the three costs in Eq. (4.9). Then configurations with the first

6 lowest costs are preserved for |Nk| = 5, and configurations with the first 8 lowest

costs are preserved for |Nk| = 6.

Pφ = −PwPiPd (4.9)

For Pw, we utilize the fact that the width of parent segment is larger than the

width of any children segments. First we use the relative width to eliminate some

impossible configurations if qp− qc < −1, where qp is the relative width of the parent

segment (one providing the head), and qc is the relative width of the thickest child
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segment (one providing the tail). Then we calculate Pw using Eq. (4.10), where wp and

wc are the absolute widths of the parent and child segments respectively introduced

in Section 4.2.4.1.

Pw = log(wp − wc + 1.5) (4.10)

For Pi, we evaluate the cost of every child segment being connected to one

parent over another parent using intensity information. Specifically, for child segment

vc, the cost pc is calculated using Eq. (4.11), where ~Ic is its intensity vector, ~Ipc is the

intensity vector of the parent it connects, and ~Ipd is the intensity vector of the parent

it disconnects. For a configuration, the Pi is the multiplication of the pc of three child

segments.

pc = |~Ic − ~Ipd|/|~Ic − ~Ipc| (4.11)

For Pd, we make three rules to model the angles between the parent segment

and its children segments. If a parent segment has only one child, then the two

segments should be as aligned as possible. If a parent segment has two children, then

the two children segments should also be connected to the parent in a balanced way.

If a parent segment has three children, also the three children segments should be

connected to the parent in a balanced way.

When |Nk| = 4, there are eight potential configurations logically. Since there

might be unknowns in this type of neighborhood, three different algorithms are de-

signed for different cases. The first case is when there are 2 heads and 2 tails. In

this case there are only 4 possible configurations, and we use the same method for
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|Nk| = 5, 6 to calculate the costs for them.

The second case is when there is 1 head and 3 tails. In this case 3 tails are

supposed to connect to the head, unless the neighborhood is near the OD. When it is

near the OD, we assume 1 tail should be a root, which should be separated from the

head. Thus there are 4 configurations: Φ = {φ1, φ2, φ3, φ4}, where φ1 = {h, t1, t2, t3},

φ2 = {h, t1}, φ3 = {h, t2}, and φ4 = {h, t3}. The cost of φ1 is given in Eq. (4.12),

where pD is a distance factor, vd is the distance of segment centroid to the OD and

rOD is the radius of the OD. The cost of three other cases is given in Eq. (4.13), where

Iri, i ∈ 1, 2, 3 is the difference of mean intensity between the only separated segment

and the three connected segments; Iij, i, j ∈ 1, 2, 3 and i 6= j is the difference of mean

intensity between the three connected segments.

pφ = pD − 3 where, pD =
rOD

2× vd
(4.12)

pφ = pD
Ir1Ir2Ir3
I12I13I23

− 3 (4.13)

The third case is when there is only 1 head, and the number of unknowns is

larger than 0. In this case we first determine if there is another head. If there is not,

then it belongs to the second case; if there is another head, then it belongs to the

first case. Here end point directions are used to determine if there is another head.

Generally if the direction of the segment with an unknown has a small angle with the

direction of the segment of the determined head, and the segment with the unknown

aligns well with another segment that is not the head, then this unknown is a head.
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4.2.4.3 The Global Costs

The candidate solutions generated by Algorithm 4.2 might not fit the topology

of the retinal vasculature since it only uses the first term of Eq. (4.4). A set of global

costs are thus imposed to select the optimal solution which fit the topology of the

vasculature best, which is composed of three components in Eq. (4.14). For our

experiment β in Eq. (4.4) is set as 1.

F (G) = D(G) +B(G) + C(G) (4.14)

The first term is the sum of the distances of every constructed tree t to the

OD in Eq. (4.15), which is the Euclidean distance from the nearest pixel of a tree to

the center of OD.

D(G) =
∑
t∈G

d(t) (4.15)

The second term is the bifurcation evaluator at each bifurcation in Eq. (4.16).

Here b represents each bifurcation; θ1 and θ2 are the angles between two children

vessels and the parent vessel for each bifurcation; and l1 and l2 are lengths of children

vessels.

B(G) =
∑
t∈G

∑
b∈t

h(b) where, h(b) = l1e
π
2
−θ1 + l2e

π
2
−θ2 (4.16)

The third term C(G) is the consistency of the vessel dominant orientation.

After trees are constructed from the VPCM, the vessel dominant orientations are
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determined for all segments, and a penalty is imposed for the segments whose dom-

inant orientations are opposite compared to the VPCM. The penalty is the sum of

the lengths of these segments.

4.2.5 A/V Classification

After separating complex VPCMs into multiple trees of two types, with each

separated tree being referred to as an overlapping tree, the next step is to determine

which trees (including those from simple VPCMs) are arterial and which are venous.

For overlapping trees, the most difficult part is completed as part of the separation

of complex VPCM into trees with two types, so we now are able to rely on rela-

tive differences between the overlapping trees to help in the final A/V classification.

However, for simple VPCMs (each of which is a single tree, by definition), we need

to decide its A/V category independently, which can to be more difficult. Here, for

consistency, the simple VPCMs are referred to as independent trees, compared to the

overlapping trees which are generated from complex VPCMs. In both cases, we use

a pixel-based classification method to help make the arterial/venous determination.

In particular, the probability of each centerline pixel being arterial or venous is

obtained first. The algorithm is similar to the machine-learning method proposed by

Niemeijer et al. [126]. Briefly, 31 features regarding vessel intensity are extracted and

19 features are selected as the final features. The 19 features include the vessel width

and 18 intensity-related features on the 6 channels mentioned in Section 4.2.4.1: the

average and standard deviation of vessel intensity transectionally, and the ratio of
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intensities inside and outside of the vessel profile. The intensity inside is the average

vessel intensity, and the intensity outside is the average intensity between the vessel

boundary and twice the width away from the boundary. Here a Support Vector

Machine (SVM) with the radial basis function kernel is used as the classifier, which is

trained on the data of 48 images from our previous work [146]. The dataset is evenly

separated into two subsets to select these final features.

After each centerline pixel is classified, overlapping trees and independent trees

are classified into A/V trees using different strategies.

4.2.5.1 Overlapping Tree Classification

For overlapping trees from each VPCM, the probability of each type of trees

being arterial and venous are the normalized summation of all its centerline pixel

probabilities. Since they are already separated into two types, the one with higher

arterial probability is defined as the arterial tree and the other is defined as venous

tree.

4.2.5.2 Independent Tree Classification

For each independent tree, two algorithms are developed to determine the

types of trees. The first one is to only use the probability by the pixel classification.

The second one is to use the pixel classification combined with geometric information.

For the first one, a probability is obtained for each tree as the normalized summation

of its centerline pixel probabilities. If the tree probability is larger than 0.5, it is

defined as arterial; otherwise it is defined as venous.
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For the second algorithm, geometric information is combined with the prob-

ability obtained in the first algorithm. The geometric information is based on the

general rule that arteries and veins tend to appear alternatively around the OD. This

phenomenon is especially strong in the region on the opposite of the fovea with respect

to the OD, where most of independent trees appear (see Figure 4.19). To utilize this

phenomenon, we first assume that there are overlapping trees and they are classified

into A/V trees. We use these classified A/V trees as neighbors to constrain the types

for these independent trees.

(a) (b) (c) (d)

Figure 4.19: (a) A fundus image. (b) The A/V ground truth of (a). (c) A fundus

image. (d) The A/V ground truth of (c). Arteries and veins typically alternate along

the yellow curve.

First of all, we calculate an angle for each tree representing the polar position

with respect to the OD. The angle is the average of angles of vessel centerlines with

respect to the OD. Then all trees are ranked and sorted using their angles and the
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independent trees are separated into groups such that for each group there are no

classified A/V trees between any two independent trees. In each group, we find the

closest A/V trees on both end of each group of independent trees, named as the

lower neighboring A/V tree and the upper neighboring A/V tree. Each group of

independent trees are classified together with the information of neighboring A/V

trees, which is modeled as an optimization problem. Here we assume there are n

independent trees in a group, denoted as T1...Tn, with the lower neighboring tree and

the upper neighboring tree denoted as O and U respectively. So the optimization is to

find the labels of each tree li = {0, 1}, which minimizes the cost C given by Eq. 4.17.

C(~L) =
n∑
i=1

1

P (Ti|li)
−

n−1∑
i=1

D(Ti, Ti+1)(li − li+1)
2

−D(T1, L)(l1 − lL)2 −D(Tn, U)(ln − lU)2

where D(Ti, Ti+1) =
∑
c∈Ti

∑
p∈Ti+1

1

E(c, p)2

(4.17)

Here li represent the independent tree Ti being either artery or vein; P (Ti|li) is

the probability of tree Ti being artery or vein given by the pixel-classification method.

Besides the first term, the rest three terms describe the phenomenon that two close

trees are of different types. D(Ti, Ti+1) is a weight factor represented by a function of

the distance between two trees. Here E(c, p) is the Euclidean distance between two

vessel centerline pixels.

So solve this problem, since usually n is small, usually around 3, and seldom

larger than 5, the optimal solution can be easily obtained by simply iterating through

all combinations of the labels of trees.
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4.3 Experiments and Results

4.3.1 Data

Two datasets are used to test the performance for the proposed method. First

a dataset RITE (Retinal Images vessel Tree Extraction) is generated and made public

which is based on a well-known public available dataset DRIVE [4]. To build the

dataset, two experts corrected the vessel reference standard on nine images from

DRIVE, and then added arterial and venous labels. The RITE contains 40 sets of

images, equally divided into a test subset and a training subset, as the DRIVE does.

Each set contains a fundus images, inherited from DRIVE, a vessel reference standard

and a A/V reference standard. For the test subset, the vessel reference standard is

the vessel reference standard named 2nd manual in DRIVE. For the training subset,

the vessel reference standard is a modified version of the vessel reference standard

named 1st manual in DRIVE. The A/V reference standard is generated by labeling

each vessel pixel, with one of four labels on the vessel reference standard: artery (A),

vein (V), overlap (O), and uncertain (U), encoded by four colors, respectively: red,

blue, green, and white. An example of a RITE fundus image, its vessel reference

standard and A/V reference standard are shown in Figure 4.20. RITE is available at

http://www.medicine.uiowa.edu/eye/RITE/.

Another dataset is 48 color mosaiced fundus images, referred as the Mosaic

dataset in this thesis, which is used in our previous work [146] (Figure 4.21(a)). Since

there is no vessel reference for this dataset, the A/V reference is generated by manually

labeling the generated VPCM image into a A/V skeleton image (Figure 4.21(c)).

http://www.medicine.uiowa.edu/eye/RITE/
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(a) (b) (c)

Figure 4.20: (a) A RITE fundus image. (b) The vessel reference standard. (c) The

A/V reference standard.

(a) (b) (c)

Figure 4.21: An example of result from the Mosaic dataset. (a) A fundus image. (b)

The vessel segmentation. (c) The A/V reference (skeleton images are thickened for

better visualization).
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4.3.2 Evaluation Methods

The direct output of our algorithm is the labeled A/V vessel centerlines. For

the RITE dataset, we evaluate the A/V vessels with respect to the A/V reference

standard using the coverage rate and the accuracy. The coverage rate is the ratio

of classified vessel pixels over all of the vessel pixels defined in the RITE reference

standard, excluding pixels labeled as U or O. The accuracy is the ratio of correctly

classified pixels over all classified pixels. Here two types of accuracies are used, re-

ferred to as the pixel-wise accuracy and the centerline-wise accuracy. The pixel-wise

accuracy considers all vessel pixels, and the centerline-wise accuracy considers all

vessel centerline pixels.

To calculate the pixel-wise accuracy and the coverage rate, a post-processing

step is conducted to dilate the result of A/V centerlines into A/V vessel images, using

the vessel reference standard as a mask. This results in a new image with each vessel

pixel in the original vessel reference standard being labeled as A,V, or unclassified,

based on the label of the corresponding centerline pixel in the algorithmic result. An

unclassified vessel pixel occurs when no corresponding vessel is present in the input

vessel segmentation or when the vessel segment has been removed during the VPCM

construction.

Then this recovered pixel-based A/V vessel image is compared to the A/V

reference standard. To calculate the centerline accuracy, the A/V reference standard

is skeletonized first and then is compared with the result. During the measurement of

the accuracy, all U is excluded, and all O is considered as correctly classified if classi-
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Table 4.2: Evaluation Matrix

A/V reference

A/V algorithm result A V Overlapping Uncertain

A TA FA TAg /

V FV TV TVg /

Un-labeled U /

fied. The comparison is summarized in the matrix in Table 4.2 and the measurements

are summarized in Eq. (4.18) and Eq. (4.19).

CoverageRate =
TA+ FA+ TAg + FA+ TV + TVg

TA+ FA+ TAg + FA+ TV + TVg + U
(4.18)

Accuracy =
TA+ TAg + TV + TVg

TA+ FA+ TAg + FA+ TV + TVg
(4.19)

4.3.3 Experiments on Effects of Global Functions

First of all, to investigate the effects of global functions on the optimization

problem of separating VPCM into binary trees and classifying them into A/V trees,

the developed methods with different forms of global functions are tested on RITE

dataset. Since the approach is about the disambiguation of arterial and venous trees

from a given vessel segmentation, both manual and automatic vessel segmentation

are used as the input of the algorithm.

For the manual segmentation, since many very thin vessels are often of little
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clinical interest, they are removed after we obtain partitioned vessel segments. In the

experiment, the segments with width smaller than 1.5 pixels are removed, given the

fact the the median vessel width is around 4-5 pixels and vessels narrower than 1.5

are very difficult to recognize even for humans (see Figure 4.22).

(a) (b) (c)

Figure 4.22: (a) The manual vessel segmentation. (b) The vessel segments with thin

vessels in red. (c) The vessel segments after thin vessels removed.

For the automatic vessel segmentation, a vessel probability map is first gener-

ated using a method previously developed in our group [4]. And then the hysteresis

threshold is used to threshold the probability map to obtain the vessel segmentation.

The notations of global cost functions are defined in Section 4.2.4.3, and the

methods with different forms of global functions are summarized in Table 4.3. Since

the global functions are only aimed to separate complex VPCMs that generate over-

lapping trees, only overlapping trees classification are evaluated in this experiment.
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Table 4.3: Summary of methods using different forms of global functions.

local cost
Tree Distance

D(G)
Bifurcation

Evaluator B(G)
Orientation

Consistency C(G)

Method 1 *

Method 2 * * * *

Method 3 * *

Method 4 * *

Method 5 * *

Method 6 * * *

Method 7 * * *

In this case, the VPCMs for these methods are the same, thus the coverage rates are

the same. Therefore accuracy is the only criteria used here. Since both centerline-

wise and pixel-wise accuracies are very similar, the centerline-wise accuracy is used.

The summary of the result for both the manual segmentation as the input and the

automatic segmentation as the input are in Table 4.4 and Table 4.5. An example of

results of different global functions is in Figure 4.23.

From Table 4.4 and Table 4.5, method 2 (the method using all three forms

of the global functions) have the highest mean accuracy for both the manual and

automatic vessel segmentations; And method 5 (the method using only the bifurcation

evaluator term) has the lowest mean value for both segmentations. Two-tail pair-wise

t-tests are conducted to compare method 2 with every other method. For the manual
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Method 1

Method 2

Method 3

Method 4

Method 5

Method 6

Method 7

(a) (b) (c) (d)

Figure 4.23: Examples of results for different global functions. (a) Result for manual

vessel segmentation. (b) Result with error indicated in yellow for manual segmenta-

tion. (a) Result for automatic vessel segmentation. (b) Result with error indicated

in yellow for automatic segmentation.
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Table 4.4: Centerline-wise accuracies of methods using different forms of

global functions when the manual vessel segmentation is the input.

Mean & std. (%) Min. (%) Max. (%) pairwise P-value

Method 1 86.56±11.01 63.27 99.92 0.061

Method 2 88.76±9.85 66.50 99.92 /

Method 3 85.31±12.81 52.17 99.23 0.006

Method 4 86.75±11.72 55.85 99.92 0.094

Method 5 85.60±13.01 49.50 99.92 0.024

Method 6 87.26±11.30 52.17 99.92 0.093

Method 7 86.51±12.54 51.94 99.23 0.024

Table 4.5: Centerline-wise accuracies of methods using different forms of

global functions when the automatic vessel segmentation is the input.

Mean & std. (%) Min. (%) Max. (%) pairwise P-value

Method 1 84.91±10.91 59.81 99.44 0.089

Method 2 87.34±9.46 63.17 99.44 /

Method 3 85.29±11.47 58.97 99.44 0.076

Method 4 84.87±11.34 57.64 99.44 0.098

Method 5 83.89±11.06 59.62 99.44 0.012

Method 6 86.39±9.99 62.65 99.44 0.095

Method 7 85.35±11.48 58.97 99.44 0.059
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vessel segmentation, method 2 is significantly better than method 3, method 5 and

method 7. For the automatic vessel segmentation, method 2 is significantly better

than method 5. Although method 2 does not have significantly better results than

method 1, method 4 nor method 6, it has slightly better result than any of them.

Due to this reason, the global functions in method 2 are selected as the final form of

the global function and are used in all of the later experiments.

4.3.4 Experiments on the Influence of Vessel Segmentation

The second experiment is conducted to investigate the influence of differ-

ent vessel segmentations on the performance of the algorithm to separate complex

VPCMs and classify generated overlapping trees into A/V trees. The experiment is

conducted on RITE dataset. To simulate different vessel segmentations, hysteresis

thresholds with different parameters are applied to the vessel probability map used

in the first experiment to yields different vessel segmentations. In this experiment,

the two thresholding parameters of the hysteresis threshold (the lower bound Il and

the higher bound Ih) are controlled by Otsu’s Thresholding value Io (see Eq. 4.20).

Here 8 pairs of Tl and Th are setup to simulate 8 different vessel segmentations. The

8 pairs of values are (0.5, 1.1), (0.6, 1.1), (0.7, 1.1), (0.8, 1.1), (0.9, 1.2), (1.0, 1.3),

(1.1, 1.4) and (1.2, 1.5), and their vessel segmentation are referred as input 1 to input

8. Among them the first generates the most segmentation, and the the last generates

the least segmentation. An example of vessel segmentations of an fundus image with

noise is in Figure 4.24.
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Il = Io ∗ Tl

Ih = Io ∗ Th

(4.20)

fundus input 1 input 2 input 3 input 4

prob. map input 5 input 6 input 7 input 8

Figure 4.24: An example of a fundus image with a large amount of noise and different

vessel segmentations.

The performance of the algorithm on the 8 vessel segmentations of RITE

dataset is summarized in Table 4.6. The coverage rates and accuracies are plotted

in Figure 4.25. It shows that the coverage rate decreases as the vessel segmentation

includes less vessel pixels. The accuracies fluctuate over different vessel segmentations,

but in general they increase as the vessel segmentation includes less vessel pixels.

Besides, it is noteworthy that the algorithm fails on one or two images for the first

4 inputs. This implies that when the thresholds are low so the vessels are over-
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Table 4.6: The results of A/V tree construction trees using overlap-

ping trees on 8 different automatic vessel segmentation.

Coverage
Rate(%)

Pixel-wise
Accuracy(%)

Centerline-wise
Accuracy(%)

No. of failed
images

Input 1 79.68±4.42 85.54±10.78 85.81±10.65 2

Input 2 78.90±5.04 86.01±8.92 86.15±9.23 2

Input 3 77.40±6.17 84.70±10.92 84.72±11.29 2

Input 4 76.44±6.58 86.97±7.84 87.36±8.15 1

Input 5 76.14±6.91 85.14±9.61 85.26±9.96 0

Input 6 75.58±9.27 85.32±10.62 85.48±11.22 0

Input 7 74.04±7.92 86.99±9.59 87.72±10.13 0

Input 8 71.07±11.37 86.59±10.31 87.46±10.40 0
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Figure 4.25: The coverage rates and accuracies for different vessel segmentations.

segmented and too many false-positives are included, the algorithm might fail. The

failures happen because during the construction of the VPCM, false-positives disturb

the vessel neighborhood searching thus a VPCM with too many cycles are generated

thus unable to be separated. An example of the failed images with different outputs

are shown in Figure 4.26. The fundus image and the vessel segmentations are shown

in Figure 4.24. For this fundus image, the first three input are badly over-segmented

thus the algorithm fails to generate binary overlapping trees. Although the remaining

five inputs still contain a fair amount of false positives and noise, the developed

algorithm manages to construct the VPCM and separate it into binary overlapping

trees. The result of this experiment implies that in order to obtain a satisfying result,
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Table 4.7: A/V classification results for independent trees on RITE.

Manual Automatic

Pixel-wise
Accuracy(%)

Centerline
Accuracy(%)

Pixel-wise
Accuracy(%)

Centerline
Accuracy(%)

Pixel-classification 88.61 ± 10.11 74.45 ± 20.05 85.91 ± 8.81 75.49 ± 20.67

Pixel-classification
with geometric constraint

80.15 ± 17.50 78.05 ± 20.30 72.48 ± 22.13 74.01 ± 22.38

the vessel segmentation has to be of a certain quality. The results from input 5 to

input 8 indicates that for different vessel segmentations with a satisfying quality, the

algorithm has similar performance. However there is a trade off between the coverage

rate and accuracies. This is understandable since the higher coverage rate indicates

more small vessels are classified, thus the accuracies would be impaired.

4.3.5 Experiments on Independent Tree Classification

The two methods for independent tree classification is evaluated on the RITE

dataset and the result is shown in Table 4.7. From the table we see that the pure

pixel-classification algorithm works better than the pixel-classification with geometric

constraint, for both the manual vessel and automatic vessel segmentations as the

input. For this reason, only the pixel-classification algorithm is used as the method

for independent tree classification in any later experiments.
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(i)

input 1 input 2 input 3

(ii)

(iii)

(iv)

(v)

input 4 input 5 input 6 input 7 input 8

Figure 4.26: An example of results with failure for different vessel segmentations as

the input. Row (i): The VPCMs for the first three vessel segmentations that fails

to be separated into overlapping trees. Row (ii): The VPCMs for the rest five vessel

segmentations that yields overlapping tree results. Row (iii): The complex VPCMs to

be separated for the rest five vessel segmentations. Row (iv): The A/V classification

of overlapping trees overlapped with vessel reference standard. Row (v): The A/V

classification of overlapping trees with errors indicated in yellow.
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4.3.6 Overall Performance

The overall results performed on RITE dataset for the manual vessel segmen-

tation input and the automatic vessel segmentation input are presented in Table 4.8

and Table 4.9 respectively, with the classification for the overlapping trees, the in-

dependent trees and all trees. An example of results for both inputs is shown in

Figure 4.27.

From the two tables, we see that the results for manual vessel segmentation

are better than those for automatic vessel segmentation, which have both higher

coverage rate and accuracies. This is reasonable since the manual vessel segmentation

has higher quality than the automatic one. However, the difference of accuracies is

not large, showing that the proposed method can process vessel segmentations with

different qualities. Also the classification accuracies for overlapping trees are better

than those for independent trees, especially the centerline accuracy.

For the Mosaic dataset, only the centerline accuracy is measured. The result

is shown in Table 4.10, along with the result of previous version [146], which only

worked on overlapping trees, but ignored independent trees. The higher accuracy

of our current approach indicates a cost function combining vessel width, intensity,

direction and dominant orientation is advantageous, since the previous one only used

vessel directions. Example results are shown in Figure 4.28.



www.manaraa.com

102

Table 4.8: A/V classification results for manual vessel inputs on RITE.

Coverage
Rate (%)

Pixel-wise
Accuracy (%)

Centerline-wise
Accuracy (%)

Overlap. Trees 80.38 ± 9.15 89.38 ± 9.15 88.72 ± 9.62

Indep. Trees 7.66 ± 7.50 88.61 ± 10.11 74.45 ± 20.05

All Trees 88.04 ± 4.95 88.15 ± 8.68 87.13 ± 9.14

Table 4.9: A/V classification results for automatic vessel inputs on RITE.

Coverage
Rate (%)

Pixel-wise
Accuracy (%)

Centerline-wise
Accuracy (%)

Overlap. Trees 74.48 ± 12.85 86.85 ± 8.21 86.76 ± 7.77

Indep. Trees 9.07 ± 9.07 85.91 ± 8.81 75.49 ± 20.67

All Trees 83.55 ± 5.35 86.11 ± 7.64 85.91 ± 7.39

Table 4.10: A/V classification results for automatic vessel inputs on Mosaic.

Overlapping Trees Indep. Trees All trees
Previous

method [146]

Centerline
Accuracy(%)

87.25 ± 8.32 63.38 ± 33.98 85.32 ± 8.23 84.00 ± 9.00
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(i)

(ii)

(a) (b) (c) (d) (e)

Figure 4.27: Examples of results from the fundus image in Figure 4.20(a). Row

(i): results from the manual input. Row (ii): results from the automatic input. (a)

Vessel segmentation. (b) VPCM with neighborhood indicated in yellow boundary. (c)

Independent VPCMs in different colors (centerlines thickened for better visualization)

(d) A/V results overlapped with vessel segmentation ground truth (red for A, blue

for V). (e) A/V results with errors in yellow.
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(a) (b) (c)

Figure 4.28: The result from the example from Mosaic dataset shown in figure 4.21.

(a) The VPCMs. (b) The A/V result. (c) The A/V reference (skeleton images are

thickened for better visualization).

4.4 Discussion

A novel method to construct the arterial and venous vasculature from retinal

images is proposed in this chapter. Using the topological property of the retinal

vessels, the developed algorithm is able to use both local and global information to

recognize the landmarks of the vessel network thus to construct the anatomical trees.

The general strategy is to build an over-connected vessel network first, a VPCM, and

then separate it into multiple trees with binary labels. During the construction of the

VPCM, neighborhoods are properly constructed to represent potential landmarks.

Then separating the VPCM is modeled as an optimization problem and solved using

a special graph-based meta-heuristic algorithm. The major merit of the method is

that it avoids being trapped at local optima due to local errors (image noise, vessel

segmentation and pre-processing errors), because it utilizes a variety of features both
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locally and globally. The proposed method also can recognize some small vessels

which are difficult to classify using only local knowledge.

To demonstrate its performance, a publicly available dataset RITE is built

which is based on the well-known dataset DRIVE. RITE and another previously built

dataset MOSAIC are used to evaluate the performance of this developed algorithm.

The result from RITE indicates that this method performs well on both manual and

automatic vessel segmentation inputs. The reported results are also comparable with

recent work by Dashtbozorg et al. [153], who tested on half of DRIVE (DRIVE test

set of 20 images). In particular, using the images from the DRIVE test set with

the automatic vessel segmentation as the input (half of the images reported in the

experiments), the developed method obtains mean and std. of the pixel-wise accuracy

as 87.09% ± 9.18 for the overlapping trees, and 85.68% ± 8.34 for all trees. Using

a different automated vessel segmentation as input and an A/V reference standard

defined by different experts, Dashtbozorg’s algorithm obtained a pixel-wise accuracy

of 87.4%. However, Dashtbozorg et al. only classified the main vessels (vessels with

a width larger than 3 pixels). While they did not provide a reported coverage rate,

it is reasonable to assume that since the developed method included classification

of smaller vessels, our coverage rate is likely higher. In addition, the accuracy is of

course also dependent on the input vessel segmentation as evident by the fact that the

accuracy increased when using a manual vessel segmentation as input. For DRIVE

test set with manual vessel input, the developed method achieves mean and std. of

pixel-wise accuracy as 90.5% ± 8.98 for the overlapping trees and 88.76% ± 8.83 for
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all trees. Note that not all methods would necessarily perform better when using

a manual vessel segmentation as input, given the additional vessels to classify, as

indicated in our pixel-classification-only results in the next paragraph.

The performance of the developed method is also comparable to a method

developed by Joshi et al. [124], which was tested on a randomly generated subset of

the MOSAIC data. Tested on 13 randomly selected images, Joshi’s method yields an

average pixel-wise accuracy of 88.28%, comparing with a ground truth generated by

their group. The developed algorithm yields an average centerline-wise accuracy of

87.25%, which is very close to that of Joshi’s method.

It is also interesting to note that the results from both datasets indicate that

the core part of the developed method, which involves the separation and classification

of overlapping trees, performs better than the pixel-based classification of indepen-

dent trees. To further explore the potential advantage of including the tree separation

component in final classification results, pure pixel-based classification method is com-

pared (i.e., determining the label of each vessel segment based only on the majority-

vote for all classified centerline pixels within the segment) on all trees for images

from RITE. Generating the same coverage rate, the pixel-classification-only approach

obtained a mean pixel-wise accuracy and centerline accuracy of 81.90% ± 6.17 and

79.37% ± 6.60 for automatic vessel segmentation as input (which is smaller than

the 86.11% ± 7.64 and 85.91% ± 7.64 accuracies obtained by the full approach); for

manual vessel segmentation as input, it obtained a mean pixel-wise accuracy and cen-

terline accuracy of 79.27%±6.09 and 74.91%±6.39 (which, again, is smaller than the
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88.15%± 8.68 and 87.13%± 9.14 accuracies obtained by the full approach). The fact

that using an automatic vessel segmentation as input yields higher accuracy for the

pixel-classification-only approach when compared to using a manual vessel segmen-

tation as input is likely because automatic vessel segmentation has fewer thin vessels

than the manual vessel segmentation, which are difficult to classify merely using local

information.

The algorithm is implemented in C++ and runs on a common Linux computer

(AMD Opteron Processor 8439 SE). The median of total running time is 175 seconds,

with the maximum case of 573 seconds. For RITE dataset, the median of the running

time for solving the overlapping tree is 26.9 seconds, with the maximum case of 385

seconds. Since images in RITE are mostly fovea-centered, most of them contain two

major complex VPCMs, with several exceptions containing one, three or four complex

VPCMs. A graph transferred by a major complex VPCM normally has around 80

nodes and 100 edges, and 10 cycles. The largest graph contains 248 nodes and 284

edges, with 37 cycles, which corresponds to the image with the maximum running

time. It happens for image 13 test in RITE with the manual vessel segmentation as

input (Figure 4.29). This is the only graph that the heuristic algorithm cannot find

a feasible solution and the solution generated contains cycles.

4.5 Conclusion

In this chapter, a novel framework is presented to automatically construct

the arterial and venous vascular trees in retinal images given a vessel segmentation.
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(a) (b) (c) (d) (e)

Figure 4.29: The image with the largest graph. (a) The fundus image. (b) The vessel

ground truth. (c) Independent VPCMs in different colors. (d) A/V result overlapping

with the vessel segmentation. (e) A/V result with errors in yellow.

The presented framework repairs connectivity between vessels by building a strongly

connected network and the vessel network is separated into overlapping binary trees

by using a graph-based algorithm. Then a pixel-based classification method is used

to distinguish these overlapping binary trees, as well as other independent trees into

A/V trees. The presented approach is tested on a public dataset and a private

dataset. Experiments show that the presented method constructs A/V trees with

high accuracies and high coverage rate, for both manual vessel segmentation and

different automatic vessel segmentations. This demonstrates its robustness and high

accuracy. Thus the promising results indicate its reliable performance and potential

applicability to large-scale datasets for further analysis of the retinal vasculature.
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CHAPTER 5
THE ANALYSIS OF THE RETINAL VASCULATURE IN A

CLINICAL SETTING

5.1 Introduction

The changes of the retinal vasculature are used to monitor and examine the

health status of human beings. One of the widely used features is the vessel width,

which can be measured and represented as the central retinal arterial equivalent

(CRAE), central retinal venous equivalent (CRVE) and artery-vein ratio (AVR). Pre-

vious studies have found that changes in CRAE/CRVE and AVR are associated with

many diseases, disorders and abnormalities (see Section 2.1.3 for details).

Despite their wide application, the current methods to calculate CRAE/CRVE

and AVR have the disadvantages in that they are subjective and sensitive to inter-

observer variability. CRAE and CRVE are calculated by estimating central artery and

vein diameters, which cannot be imaged with current methods, from their daughter

branches recursively, based on the relationship between the diameter of parent and

daughter vessels, known as Murray’s law [136]. The first problem is that the choices of

vessels to include is subjective and sensitive to inter-observer variability. The decision

of which vessels to include and not include in the calculation is arbitrary. Another

issue is that overlapping of arterioles and venules close to the optic disc makes it hard

to decide the vessel type for both human experts and algorithms, and thus introduces

uncertainty.

In this chapter, based on the algorithm developed in chapter 4, modified meth-
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ods are introduced to calculate CRAE/CRVE by using the topological properties

provided by the constructed A/V trees. By taking advantage of the topological infor-

mation, the proposed tree-based CRAE/CRVE is expected to be more objective and

unbiased. To evaluate it, new methods are applied on a cohort study of human immun-

odeficiency virus-infected (HIV-infected) patients under highly active anti-retroviral

therapy (HAART) and are compared with the conventional CRAE/CRVE method

which is based on determining arterial and venous vessel widths in a ring around the

optic disc. Statistical analysis is conducted to determine the merits of the proposed

method, as well as changes related to HIV-infection and HAART treatment.

The rest of this chapter is organized as follows. First, the data is described in

Section 5.2. Then the new methods to calculate CRAE/CRVE are presented followed

by a brief review of the traditional method in Section 5.3. Then the experiment to

calculate CRAE/CRVE using different methods and the comparison among them is

presented in Section 5.4. The results are presented in Section 5.5 and the discussion

of merits of the methods and new findings are presented in Section 5.6. A brief

conclusion is in Section 5.7.

5.2 Data

In this cohort study, 76 HIV-1-infected participants were recruited at the HIV

outpatient clinic of the Academic Medical Center in Amsterdam, The Netherlands,

and 58 HIV-uninfected case-matched controls were selected from the ongoing Ams-

terdam Cohort Studies on HIV/AIDS and among persons attending the sexual health
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clinic of the Amsterdam Public Health Service (details have been described in a pre-

vious publication) [154]. Participants are all males with ages larger than 45. For

the HIV-infected group, inclusion criteria is sustained suppression of HIV viremia on

antiretroviral treatment (plasma HIV-RNA < 40 copies/mL) for a period of time ≥

12 months. Images for participants were taken at two visits. The first is at the initial

treatment of the HIV-infection, and the second at the follow-up around two years

after. The time of visits for the control group are taken around a similar time to

match with the patient group.

At each visit, fundus photographs are obtained for both eyes of each participant

with a Topcon TRC- 50DX/IA camera. Several missing visits occurred for some

individuals from both groups. The total number of images from the patient group

is 276 and from the control group is 212. Each image has a size of 3000 x 2672,

with a 50-degree field of view, and is fovea-centered. Before any image processing,

these photographs are rescaled first to a size of 750 x 668, in order to obtain a good

performance for the vessel segmentation and the A/V tree construction. Institutional

Review Board approval was obtained and informed consent was given.

In general, previous studies show some changes in CRAE and CRVE in HIV-

infected patients in HAART treatment. The work in [59] shows that male patients

have significantly narrower venlues than controls. It also shows that there is a sig-

nificant trend of both narrower arteriolar and venular diameters with increasing age

in the HIV-infected group. It shows that a longer duration of HAART is associated

with narrowing of arterioles. Similar findings are claimed by another study [58] indi-
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cating that smaller CRAE and larger CRVE are associated with a history of HAART.

However this finding is not backed by the study [60], which states that there is no

association between the length of HAART and the decrease in CRAE from their data.

5.3 Methods

5.3.1 Conventional CRAE/CRVE and AVR

The most popular conventional method, developed by Kundtson [138], is to

use the widths of vessels around a region close to the OD to estimate the widths

of retinal artery/vein. Specifically, denoting the diameter of the OD as D, then a

concentric ring centered at the OD, with an inner radius of D, and a outer radius

of 1.5D is defined as the region for vessels to be measured (zone A in the example

of Figure 5.1). The width of each vessel that falls within this region is measured

and the average width for each vessel is calculated. Then the six largest widths

of arterioles/venules are converted into a single width, which is CRAE/CRVE. The

conversion is conducted in an iterative manner. In each iteration, widths are sorted

and every two widths are paired together such that the largest is paired with the

smallest, and the second largest is paired with the second smallest and so on. Every

pair of widths is converted into one width according to Eq. 5.1. Here w1 and w2

are a pair of widths, and Wc is the new width which replaces the pair in the next

iteration. Arterioles and venules use different parameters because they are known to

have different relationships at the bifurcation. Each iteration decreases the number

of widths by half. If the number of widths is odd, the medium width is simply saved
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in next iteration. The conversion continues until there is only one width, which is

CRAE/CRVE. Then AVR is calculated as the ratio of CRAE and CRVE.

Figure 5.1: An illustration of the region (zone A) used by the conventional method

to measure widths of vessels for the calculation of CRAE/CRVE.

Arterioles: Wc = 0.88× (w2
1 + w2

2)
1/2

Venules: Wc = 0.95× (w2
1 + w2

2)
1/2

(5.1)

5.3.2 Topologies of Constructed A/V Trees

The A/V trees constructed by the developed algorithm in Chapter 4 provide

topological information that can be used to calculate the vessel width. First of all,

the vessel network provides a pair relationship between intertwined A/V trees. A
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typical fundus would contain one or two major VPCMs (the ones in green and red

in Figure 5.2(a)). A/V trees that are generated from the same major VPCM share

some topological similarities and thus they provide good comparing reference. This

comparison is typically useful when AVR is calculated that involves the relative width

between the arteries and veins. In addition to this inter-network topology, each tree

itself contains some topological information. In normal cases each tree starts from a

root vessel that is closest to the OD (see Figure 5.3). Then the root vessel bifurcates

into its children vessels and they further bifurcate into next layer and this process

continues until it reaches the end of the tree. The vessels at the end of trees are

defined as leaf vessels.

(a) (b)

Figure 5.2: An example of the topological information provided by the constructed

A/V trees (a) VPCMs in different colors during the construction of A/V trees. (b)

The result of A/V trees (arteries in red and veins in blue).
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Figure 5.3: The topology of a single tree.

5.3.3 Root-based CRAE/CRVE

In this method, a root width is calculated first to represent the width for each

tree. The root width is the average width of the root vessel within a circular zone

denoted as A, which is centered at the OD, whose radius is 1.5 of the diameter of the

OD. If any part of the root vessel falls outside of the zone, the widths of that part

is not considered in the averaged width. An example is shown in Figure 5.4. If the

length of a root vessel is shorter than 20 pixels, the children vessels of the root vessel

are considered. Particularly, the averaged widths of children vessels that are within

zone A are calculated first. And then they are merged into one width using Eq. 5.1.

The merged width Wc then is averaged with the width of the root vessel to represent

the root width of the tree.

After the root width of each tree is obtained, we use them to calculate CRAE

and CRVE in a way similar to the conventional method. The only modification is
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that instead using the six largest vessel widths, we use all root widths of arterial and

venous trees.

Figure 5.4: An example of measurement of vessel width using the root-based

CRAE/CRVE method.

5.3.4 Tree-based CRAE/CRVE

In the second method, instead of using the root widths, we use the widths of

the whole A/V trees . In this method, a tree width Wt is generated for each tree first

and then Wt is used to obtain the CRAE/CRVE. To generate Wt, widths along all

vessel centerlines are first measured and they are averaged for each vessel. Then the

average width of each vessel is merged in an iterative manner. The iteration takes
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place at the leaf vessels, which are the children vessels of the last layer of bifurcations.

Specifically, widths of leaf vessels of the same bifurcation are merged using Eq. 5.1.

Then the merged width Wc is averaged of the width of the parent vessel Wp, to obtain

the new width of the parent vessel W ′
p (See Eq. 5.2, where lp is the length of the parent

vessel, and lc is the average length of the two children vessels).

W ′
p = (Wc ∗ lc +Wp ∗ lp)/(lc + lp) (5.2)

In the next iteration, parent vessels become children vessels for the bifurcations

of upper layer, and their widths are merged in the same manner to update the width

of their parent vessel. The width of vessel is iteratively updated from the lowest layer

until the procedures reaches the root vessel. When it comes to the bifurcation whose

parent vessel is the root vessel, Wt is obtained by merging the widths of two children

vessels using Eq. 5.1. At this point, we do not use Eq. 5.2 to average it with the

width of the root tree is because the arterioles and venules are often overlapped near

the OD and it is difficult to separate them either manually or automatically.

After Wt is obtained for each tree, we use it to calculate CRAE/CRVE. Due

to the fact that our A/V tree construction algorithm has higher accuracy among the

major vessel networks compared to single independent vessel trees, only trees from

the two largest vessel networks are considered, or in some cases one major vessel

network, if the two of them are intertwined.
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5.4 Experiments

To examine the possibility of automatic calculation of CRAE/CRVE, two ver-

sions of A/V tree constructed are acquired. The first one is referred as the automatic

A/V trees which are constructed using the algorithm introduced in Chapter 4. The

second one is referred as the manual A/V trees, which is generated by manually cor-

recting the errors in the automatic A/V trees. These two versions of A/V trees are

used to calculate CRAE/CRVE and AVR. The two proposed methods are compared

with the conventional method. The root-based method and the tree-based method

are calculated based on the automatic A/V trees, denoted as Method 1 and Method 2

respectively. And the conventional method is calculated based on the automatic A/V

trees and the manual A/V trees, denoted as Method 3 and Method 4 respectively. We

are interested in if any of Method 1, Method 2 and Method 3 is as good as Method

4 or better.

5.4.1 Human Intervention of A/V Tree Construction

A Matlab GUI is developed to facilitate the manual inspection and correction

of A/V trees. The average time to correct a result with errors is around 3 minutes.

Among 488 total images, 246 are manually corrected, which yields the correction rate

of 49.6%. An example of A/V trees before the correction (the automatic A/V trees)

and after the correction (the manual A/V trees) is shown in figure 5.5.
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(a) (b) (c)

Figure 5.5: An example of the automatic and manual A/V trees. (a) The fundus

image. (b) The automatic A/V trees (arteries in red and veins in blue). (b) The

manual A/V trees.

5.4.2 Statistical Analysis

To investigate the effects of different methods on indicating the changes of

vessel widths between two visits among patients and controls, and on indicating the

effect of age, generalized linear mixed-effect models (GLMMs) are used to model

the effects of these variables on CRAE, CRVE and AVR. For each of them, three

type of values are analyzed separately: the value at Visit 1, the value at Visit 2

and the difference between Visit 1 and Visit 2 (Visit 2 - Visit 1). Thus 9 types of

values are analyzed in this experiment. These 9 values are analyzed using the same

GLMM model. Besides variables of method type, subject type and age, the model

also considers the interaction between the method type and the subject type, and

the interaction between the method type and age. To probe the performance of new
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methods compared to the conventional method, Method 4 is the reference method

and the rest three methods are compared with it. For the variable of subject type,

control is the reference. All statistical analyses is performed using Statistical Analysis

Software.

5.5 Results

The descriptive measure of the data without any adjustment is summarized

in Table 5.1. The unit of CRAE/CRVE is pixel and AVR is without unit. Pair-wise

t-tests are conducted between the controls and the patients for each visit and each

method. Without any adjustment, from this table there is no difference between

controls and patients in CRAE, CRVE and AVR. Specifically, for CRAE, patients

have similar CRAE compared to controls at Visit 1 (V1). At Visit 2 (V2), patients

have smaller CRAE, but not significantly. For CRVE, patients have higher values

compared to controls at V1. Although it is not significant, the difference is close

to being significant (P-value is 0.094 for Method 1, 0.075 for Method 3, 0.063 for

method 4, and 0.257 for Method 2). At V2, patients and controls have similar CRVE

for method 1, method 3 and method 4. However method 2 shows patients have slightly

higher value than controls with P-value being 0.093. For AVR, at V1, patients have

smaller values than controls, but not significantly. At V2, patients have larger values

than controls from method 1 and method 3, with P-values close to 0.05. In general,

without adjustment, the basic statistical analysis reveals that there is no significant

difference in CRAE/CRVE and AVR between the patient and the control groups.
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Table 5.1: Statistical summary of four methods on patient and control groups of

both visits for CRAE, CRVE and AVR.

Method Visit
Control

(mean±std.)
Patient

(mean±std.)
t-test

P-value

CRAE

Method 1
1 7.062±1.127 7.124±0.913 0.745

2 6.954±0.803 6.773±0.904 0.290

Method 2
1 6.956±0.960 7.087±0.955 0.458

2 6.444±0.868 6.648±0.826 0.187

Method 3
1 7.105±1.075 7.165±0.889 0.745

2 7.023±0.782 6.842±0.891 0.228

Method 4
1 6.975±1.038 7.243±1.113 0.276

2 6.972±0.731 6.953±0.940 0.899

CRVE

Method 1
1 9.671±1.500 10.098±1.173 0.094

2 9.608±1.185 9.817±1.123 0.321

Method 2
1 9.736±1.529 10.042±1.353 0.257

2 9.282±1.090 9.636±1.249 0.093

Method 3
1 9.658±1.480 10.121±1.286 0.075

2 9.695±1.284 9.784±1.023 0.674

Method 4
1 9.888±1.259 10.325±1.270 0.063

2 10.088±1.220 10.004±0.985 0.702

AVR

Method 1
1 0.746±0.137 0.715±0.1008 0.168

2 0.734±0.087 0.703±0.103 0.075

Method 2
1 0.724±0.082 0.713±0.080 0.439

2 0.701±0.095 0.696±0.069 0.749

Method 3
1 0.750±0.119 0.716±0.098 0.106

2 0.738±0.102 0.706±0.086 0.062

Method 4
1 0.715±0.097 0.697±0.079 0.614

2 0.699±0.078 0.707±0.091 0.887



www.manaraa.com

122

The fixed effects of GLMMs for CRAE at two visits and the difference between

them are summarized in Table 5.2. In this table, Estimate is the parameter of each

variable that explains the predicted value. P-value reflects the significance of the

parameter, thus the significance of the variable or the interaction of two variables.

CRAE of patients and controls measured by these four methods at V1, V2 and V2-

V1 are in Figures 5.6, 5.7 and 5.8. To be noted that the lines in these figures show

the differences between patients and controls at different points of time, instead of

changes of subjects over the timeline.

Table 5.2 shows that for CRAE, with adjustment there is no significant dif-

ference between patients and controls on V1, V2 and V2-V1 in general. However,

different opinions are drawn about the vessel difference of V2 and V1 between pa-

tients and controls from Method 2 and Method 4(P-value of 0.021). It indicates that

for CRAE measured using Method 2, controls decrease more than patients from V1

to V2, yet controls decrease less than patients using Method 4 (see Figure 5.8). As

a matter of fact, only Method 2 shows that controls decrease more than patients,

and the rest of three methods indicate controls decrease less. However, none of these

methods show a significant difference between controls and patients. Table 5.3 shows

the difference of the decrease of CRAE between patients and controls measured by

four methods, as well as the significance of the difference. Among all variables, age

is the most influential factor of CRAE at both V1 and V2. It indicates that CRAE

decreases as age increases at both V1 and V2. However, age does not effect the vessel

changes between V1 and V2. It is probably because it is only two years between the
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Table 5.2: Fixed effects of three linear mixed effect models on CRAE at visit 1, visit 2,

and the difference between the two visits (Method 1 = the root-based method, Method

2 = the tree-based, Method 3 (M 3) = the conventional method on automatic A/V

trees and Method 4 (M 4) = the conventional method on manual A/V trees).

Visit 1 Visit 2 Visit 2 - Visit 1

Estimate
(95% CI)

P-value
Estimate
(95% CI)

P-value
Estimate
(95% CI)

P-value

Intercept
8.368

(7.047,9.688)
< .0001

8.5546
(7.506,9.603)

< .0001
-0.05190

(-1.466,1.362)
0.942

Method 1
(Ref = M 4)

0.198
(-0.788,1.183)

0.693
0.119

(-0.698,0.936)
0.774

0.148
(-0.977,1.275)

0.795

Method 2
(Ref = M 4)

0.681
(-0.304,1.667)

0.175
0.276

(-0.541,1.093)
0.506

-0.360
(-1.486,0.766)

0.529

Method 3
(Ref = M 4)

-0.036
(-1.021,0.950)

0.943
0.466

(-0.350,1.284)
0.262

0.715
(-1.486,0.766)

0.212

Patient
(Ref=control)

0.259
(-0.100,0.619)

0.157
0.002

(-0.285,0.289)
0.989

-0.231
(-0.621,0.157)

0.243

Patient∗
Method 1

-0.213
(-0.483,0.058)

0.123
-0.172

(-0.395,0.050)
0.129

0.032
(-0.280,0.344)

0.841

Patient∗
Method 2

-0.157
(-0.427,0.113)

0.254
0.213

(-0.009,0.437)
0.060

0.369
(0.057,0.682)

0.021

Patient∗
Method 3

-0.209
(-0.479,0.062)

0.130
-0.166

(-0.389,0.056)
0.143

0.017
(-0.294,0.330)

0.910

Age
-0.025

(-0.048,-0.001)
0.033

-0.028
(-0.046,-0.010)

0.002
0.001

(-0.023,0.025)
0.942

Age∗
Method 1

-0.002
(-0.019,0.015)

0.821
-0.002

(-0.016,0.011)
0.736

-0.004
(-0.024,0.015)

0.651

Age∗
Method 2

-0.013
(-0.030,0.004)

0.154
-0.014

(-0.028,0.000)
0.049

-0.003
(-0.023,0.016)

0.745

Age∗
Method 3

0.003
(-0.014,0.020)

0.734
-0.007

(-0.021,0.0067)
0.308

-0.014
(-0.034,0.005)

0.163
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Figure 5.6: The mean CRAE of patients and controls at Visit 1 (Method 1 = the

root-based method, Method 2 = the tree-based method, Method 3 = the conventional

method based on automatic A/V trees, and Method 4 = the conventional method

based on manually corrected A/V trees).
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Figure 5.7: The mean CRAE of patients and controls at Visit 2.

Figure 5.8: The difference of CRAE between V 2 and V 1 for patients and controls.
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two visits. It is also noteworthy that Method 2 shows the influence of age better

among other three methods, with P-values of 0.154 at V1 and 0.049 at V2 being

better than Method 4.

Table 5.3: The difference of CRAE changes via two visits (Visit 2 minus

Visit 1) between patients and controls (patients minus controls), mea-

sured by four methods.

Method 1 Method 2 Method 3 Method 4

Estimate −0.200 0.137 −0.214 −0.256

P-value 0.316 0.490 0.284 0.199

The fixed effects of GLMMs for CRVE at two visits and the difference between

them are summarized in Table 5.4. CRVE of patients and controls measured by these

four methods at V1, V2 and V2-V1 are in Figures 5.9, 5.10 and 5.11.

Table 5.4 shows that with adjustment for CRVE there is no significant dif-

ference between patients and controls at Visit 1 from four methods. Patients have

slightly larger CRVE, but not significantly (P-value of 0.088). At Visit 2, patients

and controls have similar values from Method 1, Method 3 and Method 4. However

from Method 2, patients have larger CRVE than controls (P-Value of 0.009). It also

shows that different conclusions about the changes of CRVE from V1 to V2 for pa-

tients and controls can be drawn based on different methods. Method 1, 3 and 4
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Table 5.4: Fixed effects of three linear mixed effect models on CRVE at visit 1, visit 2,

and the difference between the two visits (Method 1 = the root-based method, Method

2 = the tree-based, Method 3 (M 3) = the conventional method on automatic A/V

trees and Method 4 (M 4) = the conventional method on manual A/V trees)

Visit 1 Visit 2 Visit 2 - Visit 1

Estimate
(95% CI)

P-value
Estimate
(95% CI)

P-value
Estimate
(95% CI)

P-value

Intercept
11.028

(9.231,12.825)
< .0001

11.436
(9.971,12.901)

< .0001
-0.009

(-2.012,1.994)
0.993

Method 1
(Ref = M 4)

-0.189
(-1.581,1.201)

0.788
-0.363

(-1.491,0.765)
0.527

-0.048
(-1.645,1.549)

0.953

Method 2
(Ref = M 4)

0.615
(-0.775,2.006)

0.385
-0.179

(-1.307,0.949)
0.755

-0.538
(-2.135,1.059)

0.508

Method 3
(Ref = M 4)

-0.080
(-1.471,1.311)

0.909
-0.501

(-1.630,0.626)
0.382

-0.230
(-1.828,1.366)

0.776

Patient
(Ref=control)

0.426
(-0.063,0.917)

0.088
-0.057

(-0.458,0.344)
0.780

-0.395
(-0.947,0.156)

0.159

Patient∗
Method 1

-0.014
(-0.397,0.367)

0.939
0.262

(-0.046,0.571)
0.095

0.333
(-0.111,0.776)

0.141

Patient∗
Method 2

-0.145
(-0.527,0.236)

0.455
0.408

(0.101,0.717)
0.009

0.505
(0.062,0.948)

0.025

Patient∗
Method 3

0.0222
(-0.359,0.404)

0.909
0.144

(-0.163,0.453)
0.356

0.164
(-0.279,0.607)

0.468

Age
-0.020

(-0.052,0.011)
0.200

-0.023
(-0.048,0.001)

0.062
0.003

(-0.032,0.038)
0.867

Age∗
Method 1

-0.001
(-0.025,0.024)

0.968
-0.001

(-0.021,0.017)
0.845

-0.004
(-0.032,0.024)

0.778

Age∗
Method 2

-0.014
(-0.038,0.011)

0.268
-0.010

(-0.030,0.008)
0.270

-0.002
(-0.030,0.026)

0.902

Age∗
Method 3

-0.003
(-0.027,0.022)

0.829
0.0020

(-0.017,0.021)
0.838

0.001
(-0.027,0.029)

0.933
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Figure 5.9: The mean CRVE of patients and controls at Visit 1.

Figure 5.10: The mean CRVE of patients and controls at Visit 2.



www.manaraa.com

129

Figure 5.11: The difference of CRVE between V 2 and V 1 for patients and controls.

show that patients have larger decrease in CRVE between V1 and V2, compared to

controls. Method 2 shows the contrary trend. This can be observed on figure 5.11

too. However, none of these trends reach significance. Age is still a negative factor of

CRVE at both visits, but not significantly. At Visit 2, the effect of age is very close

to significance (P-value of 0.062). Among four methods, Method 2 indicates the age

factor best, but not significantly (P-value of 0.268 at Visit 1 and P-value of 0.270 at

Visit 2).

The fixed effects of GLMMs for AVR at two visits and the difference between

them are summarized in Table 5.5. AVR of patients and controls measured by these

four methods at V1, V2 and V2-V1 are in Figures 5.12, 5.13 and 5.14.
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Table 5.5: Fixed effects of three linear mixed effect models on AVR at visit 1, visit 2,

and the difference between the two visits (Method 1 = the root-based method, Method

2 = the tree-based, Method 3 (M 3) = the conventional method on automatic A/V

trees and Method 4 (M 4) = the conventional method on manual A/V trees)

Visit 1 Visit 2 Visit 2 - Visit 1

Estimate
(95% CI)

P-value
Estimate
(95% CI)

P-value
Estimate
(95% CI)

P-value

Intercept
0.787

(0.652,0.923)
< .0001

0.763
(0.650,0.877)

< .0001
-0.018

(-0.172,0.135)
0.8115

Method 1
(Ref = M 4)

0.039
(-0.084,0.164)

0.530
0.053

(-0.059,0.167)
0.353

0.027
(-0.134,0.189)

0.738

Method 2
(Ref = M 4)

0.001
(-0.123,0.125)

0.984
0.043

(-0.069,0.157)
0.449

0.024
(-0.136,0.186)

0.762

Method 3
(Ref = M 4)

-0.003
(-0.127,0.121)

0.961
0.093

(-0.020,0.207)
0.107

0.102
(-0.059,0.263)

0.213

Patient
(Ref=control)

-0.009
(-0.046,0.028)

0.628
-0.001

(-0.032,0.029)
0.934

0.004
(-0.037,0.047)

0.819

Patient∗
Method 1

-0.023
(-0.057,0.011)

0.188
-0.028

(-0.059,0.003)
0.075

-0.011
(-0.055,0.033)

0.625

Patient∗
Method 2

-0.003
(-0.037,0.031)

0.840
-0.002

(-0.033,0.029)
0.886

0.005
(-0.039,0.050)

0.819

Patient∗
Method 3

-0.024
(-0.058,0.010)

0.168
-0.029

(-0.060,0.002)
0.064

-0.012
(-0.056,0.033)

0.604

Age
-0.001

(-0.004,0.001)
0.286

-0.001
(-0.003,0.001)

0.256
0.000

(-0.003,0.003)
0.944

Age∗
Method 1

0.000
(-0.002,0.002)

0.885
0.000

(-0.002,0.002)
0.734

0.000
(-0.003,0.002)

0.777

Age∗
Method 2

0.000
(-0.002,0.002)

0.899
-0.001

(-0.003,0.001)
0.456

-0.001
(-0.004,0.002)

0.644

Age∗
Method 3

0.001
(-0.001,0.003)

0.546
0.001

(-0.003,0.001)
0.336

-0.002
(-0.005,0.001)

0.234
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Figure 5.12: The mean AVR of patients and controls at Visit 1.

Figure 5.13: The mean AVR of patients and controls at Visit 2.
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Figure 5.14: The difference of AVR between V 2 and V 1 for patients and controls.

Table 5.5 shows that with adjustment for AVR there is no difference between

patients and controls at Visit 1, Visit 2, as well as the changes between the two visits.

These four methods also shows consistence on this observation. The only exception

is for Method 3, patients have smaller AVR than controls at Visit 2. However this

observation does not reach significance (P-value of 0.064).The age have not effects on

the changes of AVR for patients neither, which is observed by measurements from all

four methods.

5.6 Discussion

From the results, we can see that in general, these four methods show very

similar conclusions about the vessel widths of HIV-infected patients with HAART
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treatment. Specifically, the results from Method 3 and Method 4 are very similar.

This indicates that the conventional CRAE/CRVE method measuring on the auto-

matic A/V trees has the same performance as measuring it on manually corrected

A/V trees. This indicates that the conventional method can be measured using the

A/V trees automatically built using the developed method in Chapter 4.

However, compared to the conventional method, the new methods reveal some

different trends. Particularly, regarding CRAE, Method 2 or the tree-based method

shows that controls have a larger decrease from Visit 1 to Visit 2, yet the other three

methods shows the contrary trend. Both sides of conclusion however do not reach

significance. This inclusive observations are consistent with some previous studies.

Previous studies [58, 59] indicates that CRAE in patients decrease more rapidly than

controls, possibly due to the effect of HAART treatment. However the study in [60]

does not find this trend. In study [60] authors argue that this inconclusive opinions

might due to the lengths of the treatments. In the studies of [58] and [59], the mean

treatment length are 6.1 years and 58 months, and the median treatment length in

the study of [60] is 7 months. Considering the treatment is two years in our dataset, it

might be inconclusive whether CRAE of patients decrease more rapidly than controls.

The clear merit of the tree-based method comes from the strong indication

of the effect of age. Previous studies [58, 59] show that CRAE decreases as age

increases. This is confirmed by these four measurements. However the tree-based

method shows the strongest effect of age, followed by the root-based method. We

assume that the tree-based method is good at capturing this trend is because it
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considers the widths of small vessels and vessels that are far from the OD, which are

missed by the conventional method. These small vessels decrease the noise in the

measurement of changes about the retinal vasculature.

Regarding CRVE, the tree-based method and the root-based method are very

consistent with the conventional method. None of them find that there is a difference

among the patients and the controls at visit 1. This is an inconclusive point since one

previous study [59] finds that male patients have smaller CRVE than male controls,

yet another previous study [60] (94.1% patients are males) finds that there is no dif-

ference in CRVE between patients and controls. The advantages of the tree-based

method over the conventional method is that it shows larger CRVE at Visit 2 com-

pared to controls. This is consistent with previous studies [58, 59] which claim that

the higher viral load that comes with the HAART is associated with wider venular

diameter. Another strength of the tree-based method is that it shows the strong effect

of age on CRVE. Previous finding [58] indicates that the age is related to the decrease

of CRVE. This trend is not significant in the four methods. However, the tree-based

method shows the largest negative effect of age compared to other methods.

Regarding AVR, all four methods are very consistent with the changes of

patients and controls between Visit 1 and Visit 2. There is no relation between age

and AVR, which fits the fact that both CRAE and CRVE decreases as age increases.

None of these methods find there is a difference between patients and controls at Visit

2, which is inconsistent with previous study [60] which claims that the HIV RNA viral

loads are significantly associated with decreased AVR.
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5.7 Conclusion

In summary, two novel methods to calculate CRAE/CRVE based on the auto-

mated constructed A/V trees are presented. One is a root-based method and another

is a tree-based method. These two methods utilize the topological information from

the A/V trees to transfer vessel widths into CRAE/CRVE. The two proposed meth-

ods are compared with a conventional method that calculates CRAE/CRVE based

on the manually corrected A/V trees. Four methods are applied on a cohort study

of HIV-infected patient who are receiving HAART treatment. Statistical analysis

shows that the results from four methods are very similar and the conclusions drawn

from them are mostly consistent. The tree-based method is better at indicating some

important factors like age that influence the changes of retinal vessel widths, than the

other three methods. Besides, one of the most important merits is that the tree-based

method is totally automatic and thus it can be applied on large-scale data analysis.
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CHAPTER 6
DISCUSSION

In this work, a novel method to automatically construct retinal arterial and

venous trees on 2D fundus images is developed and evaluated. An application of the

method in clinical data which is to measure and analyze the retinal vessel widths in

HIV-infected patients is presented as well.

This work begins with a preliminary study to automatically localize and detect

branches/bifurcations of the vasculature, which is presented in Chapter 3. As one of

the most important structures in the retinal vasculature, bifurcations are the key

of the construction of the vasculature since they determine the connections between

vessels and thus the topology of the vasculature. The special shape of the bifurcation

inspires us to use a machine learning approach to detect them by extracting the

intensity and shape information and classifying them. A vision-machine method is

used to extract the pixel information as the features and a kNN classifier is used for

the classification task. The satisfying result shows the potential application of this

methodology on other targets. However, the drawback of this method is that it only

extracts local information to detect the bifurcations, yet the local information might

be inaccurate or inadequate sometimes. As a result, this method would miss some

small bifurcations and also mis-classify some crossing points whose shapes are similar

to those of bifurcations.

To overcome the problem of limitation due to the local information, a novel

and global method is developed to construct A/V trees automatically by taking ad-
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vantages of topological and geometrical information of the retinal vasculature, which

is presented in Chapter 4. Taking a vessel segmentation as the input, this method

generates a vessel potential connectivity map (VPCM) first to over-connect nearby

vessels. Then this over-connected vessel network is separated into binary overlapping

trees that corresponds to arterial and venous trees. These binary overlapping trees,

as well as independent trees which are not connected to any vessels, are classified into

arterial and venous trees using a machine-learning approach.

The advantage of this method over existing approaches in the literature is that

it uses more global information like the topology and geometry of the vasculature,

combined with the local information like the intensity and vessel width and orientation

to solve this problem. All of these information is combined together to make the

decision by using a graph-based meta-heuristic algorithm. With the graph model,

each bifurcation or crossing points are not determined solely by its nearby pixels, but

also by the nearby bifurcations and crossing points, or all other bifurcations.

Another advantage is that this method is developed as a framework consisting

of three main separated stages, the construction of the VPCM, the separation of the

VPCM and the classification of trees. Each stage is a standalone process and thus

can be further improved separately.

This framework is tested on multiple datasets on multiple experiments. It is

tested on both manual vessel segmentation and various automatic vessel segmentation

and the results shows its robustness with various of input, especially automatic vessel

segmentation. The result is also compared with another method and it shows that the
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developed method is slightly better in regarding of accuracy. In summary, experiments

indicates its potential applicability on large datasets.

To demonstrate the application of this method and the constructed A/V trees,

it is used to analyze the vessel widths of HIV-infected patients under treatment, which

is presented in Chapter 5. To facilitate automation of the measurement, new meth-

ods to quantify the vessel widths are developed based on the A/V trees generated by

taking the advantages of the topological information carried by the constructed A/V

trees. New methods of quantifying vessel widths are compared with a conventional

method. Statistical analysis reveals that the results generated by these methods are

similar and consistent with previous studies. The conforming with previous stud-

ies indicates that the applicability of this new method of quantifying vessel widths.

Meanwhile it shows that the automatic method of constructing A/V trees has great

applicability for analyzing the retinal vasculature.

However, due to the limit of time, there are some limitations of this work

and some aspects of it can be improved and further studied. The limitations will be

discussed in the following text and the future work will be presented.

6.1 Limitations

The limitations of this work mainly comes from the limitations of the core

part of this work: the automated approach to construct A/V trees.

The first limitation of this method is that the whole process of automatic

constructing A/V trees from an fundus image is not scale-free. For the experiments in
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this work, images are inspected before and are resized into a proper scale for further

processing. This scale-correction prevents the real fully automatic construction of

A/V trees and further analysis. The scale-invariance is not realized in this procedure

for several reasons.

The first reason is that the automatic vessel segmentation is not scale-free.

Most of vessel segmentation algorithms only yield good results under a specific scale

or a range of scales, and good vessel segmentation (not largely over-segmented or

largely under-segmented ) is an important factor for the algorithm to generate a good

result.

The second reason is that the developed algorithm is not fully scale-invariant.

Specifically among the three stages of this framework, the construction of VPCM

is not scale-invariant. During the construction of a VPCM, for each end point of

vessel, a search effort is made to find its potential neighbors in order to build proper

neighborhoods. The search effort is realized in the form of the search region, and its

size is not scale-free. If the search region is too small, it might fail to find potential

neighbors, which would also happen for largely under-segmented images. If the search

region is too large, it might find too many neighbors which could generate many in-

valid cycles, which would also happen for largely over-segmented images. The second

part is the localization of the OD and the detection of the fovea. The method used

is a machine-learning method with a template matching strategy. Since the template

has only a single scale, and the training stage only includes one dataset with a single

scale, the machine-learning method is not multi-scale. If the size of the OD is too
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small or too large, the accuracy might be decreased dramatically.

The second limitation of the method is that the overlapping of two parallel

vessels (an arteriole and a venule) is not yet solved. The case often happens at

regions close to the OD and there would be a large overlapping between vessels of

two types. In this developed method, this large overlapping vessel is replaced by a

large neighborhood, thus the overlapping part is similar to a black box that does not

have effect on the final solution of the A/V trees. So the label of the overlapping part is

assigned randomly by the developed algorithm. However, in reality, especially for the

analysis of the A/V trees, for example the vessel width or the angles of bifurcations,

there is a need to determine the connectivity and types of vessels for the overlapping

part.

6.2 Future Work

Some parts of this work can be further extended and studied, which are roughly

separated into two aspects. One is to improve the performance of the automatic

construction of A/V trees. Another is to further apply the result of A/V tree for

retinal vasculature analysis.

6.2.1 Improvement of the A/V Tree Construction Framework

The first part is to increase the scale-invariance of this framework. One possible

solution is to use some outstanding target in the fundus image, usually the OD as

the reference to determine the scale for the image. Then the scale is passed to the

approach so that the parameters in the approach could be properly scaled.
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The second part is to use a more advanced method to calculate the costs

of configurations of each neighborhood (landmark). Specifically, currently multiple

types of local information are used together to calculate the costs (probabilities) of

configurations in the developed method. However this local information is modeled

with hand-designed methods and parameters are hand-tuned. Some of these models

might be better built using machine-learning methods. For example, the intensity

information can be used to build a local classifier to assign a probability for each

vessel within a neighborhood to be artery or vein. And this probability can be

integrated into the cost function for the configurations of the neighborhood.

Another part of future work could be focused on working on determining

vessels within large neighborhoods. As explained previously in the limitations, over-

lapping vessels within a neighborhood is not determined by the proposed algorithm.

This information might be useful sometimes for the retinal vasculature analysis. To

determine the types of vessels within a neighborhood, the vessels connected by this

neighborhood can be used as reference to determine them. The intensity information

can be used as a reference to classify the vessels within. Besides, the smoothness of

boundaries between connected vessels can be used as a criteria too.

6.2.2 Application of the A/V Tree Construction Framework

Based on the A/V trees constructed using the developed method, more analysis

of the retinal vasculature can be conducted besides the vessel widths. The calculation

of a few biomarkers in clinics could benefit from the A/V trees constructed, such as
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the tortuosity, the branching angle and the branch coefficient. Tortuosity measures

how twisted a vessel is. A larger tortuosity value indicates a more twisted vessel.

The branching angle is defined as the first angle subtended between two daughter

vessels at each bifurcation. The branch coefficient is the ratio of the square of the

width of parent vessels and the sum of squares of the widths of children vessels at

each bifurcation. Moreover, with constructed A/V trees, some of these measurements

which currently are only obtained on general vessel level would be able to be gathered

on arterial and venous trees separately.

Another potential application of this method is to help with the detection

of isolated abnormalities that have a similar appearance to vessels on the retina.

For example, some abnormalities, such as hemorrhages, share similar intensity with

vessels and they might be difficult to differentiate from vessels if they have similar

vessel-like shape or are connected to vessels, using solely machine-learning methods.

Using our method to detect the A/V trees, these isolated abnormalities might be

detected with higher accuracy.
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CHAPTER 7
CONCLUSION

To summarize, a thorough study of the construction of A/V trees on fundus

photographs is conducted as specific aims proposed in the beginning of the work, as

recalled as the following:

• Aim 1: To develop and evaluate an automatic approach for the detection and

localization of retinal vessel branches using a vision-machine approach.

• Aim 2: To develop and formulate a framework to solve the binary overlapping

trees problem using a graph-based model, and to apply it to construct A/V

trees in fundus photographs.

• Aim 3: Based on Aim 2, given the constructed A/V trees in fundus photographs,

to develop metrics to measure and analyze the width of A/V trees in clinics.

Chapter 3 introduces a machine learning method to detect and localize an

important type of landmarks in the retinal vasculature, bifurcations on fundus images.

It is evaluated on a dataset and the result is good, but not outstanding, thus indicating

the need of a more global method to construct the retinal vasculature using both local

and global information.

Chapter 4 introduces a novel and global framework to construct A/V trees on

fundus images. In order to solve this problem, a novel algorithm to separate binary

overlapping trees is developed. Then a framework that integrates the vessel segmen-

tation, the OD and the fovea detection, and the local neighborhood cost calculation,
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and this developed algorithm, and vessel classification is developed to construct A/V

trees on fundus images. A benchmark is constructed to evaluate the method and is

published for open comparison. The comparison with another method indicates its

better performance.

Chapter 5 introduces a novel metric to analyze the width of the retinal vascula-

ture based on A/V trees constructed by the framework in Chapter 4. The novel metric

is used to analyze a cohort study of HIV-infected patients with HAART treatment.

It compares the new metric with the conventional one and the comparison shows the

consistency thus indicates the applicability of the new metric and the framework in

Chapter 4.

In summary, the aims of this thesis are fulfilled. The developed method has a

good performance and a wide applicability on clinical data.
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APPENDIX A
THE GENERATION OF VESSEL SEGMENTS

This appendix describes the methods to separate vessel skeleton into discon-

nected vessel segments.

First of all, the vessel skeleton is pruned such that spurs (branches shorter than

3 pixels) are removed. Besides, in case that different skeletonization algorithms have

different results, to unify the skeletonization generated from different algorithms, we

remove some special vessel pixels if there is any in the vessel skeleton. For a vessel

pixel, if there are two vessel pixels within its 3× 3 neighborhood and the two pixels

are distributed in any examples of Figure A.1, the vessel pixel is removed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A.1: The complete cases of special vessel points which are removed.
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Then we find every vessel segment by finding the two ends as described in the

following steps. The first step is to find normal vessel points and critical points and

to categorize critical points according to the number of vessel pixels n within the 3

× 3 neighborhood. Denote n as the number vessel pixels in the 3× 3 neighborhood.

Vessel points are vessel pixels with n = 2. Other vessel pixels are considered as critical

points. If n = 1, they are defined as vertex points. If n = 3, they are defined as red

points. If n = 4, they are defined as green points. If n = 5, they are defined as blue

points.

For any vertex points, they are considered as an endpoint of one vessel segment.

For a red point, if it has 3 vessel points within the 3 × 3 neighborhood, it

is considered as endpoints for three vessel segments (See Figure A.2(a)); if it has 2

vessel points, it is considered as endpoints for two vessel segments (see Figure A.2(b));

if it has 1 vessel point, it is considered as an endpoint of one vessel segment (see

Figure A.2(c)); if it has 0 vessel points, it is ignored and deleted (see Figure A.2(b)).

For a green point, if it has 4 vessel points within 3× 3 neighborhood, it is

considered as endpoints for four vessel segments (See Figture A.3(a)); if it has 3 vessel

points, it is considered as endpoints for three vessel segments (see Figure A.3(b));

if it has 2 vessel points, it is considered as endpoints for two vessel segments (see

Figure A.3(c)); if it has 1 vessel point, it is considered as an endpoint for one vessel

segments (see Figure A.3(c)); if it has 0 vessel points, it is ignored and deleted (see

Figure A.3(d)).

For a blue point, it is impossible to have more than 2 vessel points in a 3× 3
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(a) (b) (c)

Figure A.2: Different cases of red critical points. (a) A red point with three vessel

points. (b) The upper-left red point which is with two vessel points, and the center

red point which is with 0 vessel points. (c) Three red points with one vessel point.

(a) (b) (c) (d)

Figure A.3: Different cases of green critical points. (a) A green point with four vessel

points. (b) A green point with three vessel point. (c) The center green point which is

with two vessel points, and the upper-left green point which is with one vessel point.

(d) The center green point which is with zero vessel points, and four green points

with one vessel point shown around it.
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neighborhood. If it has 2 vessel points, it is considered as endpoints for two vessel

segments (see Figure A.4(a)); If it has 1 vessel point, it is considered as an endpoint

for one vessel segment (see Figure A.4(c)); If it has 0 vessel points, it is ignored and

deleted (see Figure A.4(b)).

(a) (b) (c)

Figure A.4: Different cases of blue critical pints. (a) A blue point with two vessel

points. (b) A blue point with one vessel point. (c) A blue point with zero vessel

points.

After finding normal vessel points and critical points, we transfer critical points

into end points of vessel segments. A critical point is transferred into the number of

end points as the number vessel points in the 3×3 neighborhood. After collecting all

the end points and vessel points, we start from an arbitrary end point and iteratively

find the next vessel point in the 3× 3 neighborhood to build a vessel segment, until

we find another end point. After a vessel segment is built, its two end points are

removed from the set of end points. The construction of vessel segments ends when
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there is no end point. The example of segments with end points built from Figure A.3

is shown in Figure A.5.

(a) (b) (c) (d)

Figure A.5: Examples of end points shown in red, built from critical points in Fig-

ure A.3.

Because some of segments share the same end point, to uniquely identify vessel

segments with their two end points, we remove the end points from segments that

overlaps at the end point. The method is to for vessels sharing the end point, only

the vessel with the shortest length keeps the end point, and the common end point is

deleted from other segments. An example of segments with the end point modification

from cases in Figure A.5 is shown in Figure A.6.

After vessel segments are built, we have a set of segments such that each

segment vi is uniquely associated with its two end points ep2i and ep2i+1. Then the

next step is to find neighbors for each segment, which ultimately builds the vessel

potential connectivity map (VPCM).
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(a) (b) (c) (d)

Figure A.6: Examples of end points shown in red, after the removal of overlapping

end points, built from examples in Figure A.5.
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APPENDIX B
THE DETERMINATION OF VESSEL ORIENTATION

This appendix describes the methods to determine the vessel dominant orien-

tations for segments, which are determined using multiple models together.

The first model is to use the root and leaf property. First of all, two special

types of segments in a VPCM are introduced, the root segment, from which the

trees start and the leaf segment, at which the trees end. There usually are multiple

roots and leaves in a complex VPCM. For roots, their tails have no neighbors. For

leaves, their heads have no neighbors. So we first find out all segments that have one

end point without neighbors, then we classify them into roots and leaves using their

distances to the OD. Roots are the ones closer to the OD, and leaves are the ones

farther away from it. After we determine roots and leaves, we extend their labels

to other segments using the following method. For a root or leaf, if its end point

with neighbors has only one neighbor not already labeled as the same type, then the

neighboring segment is also labeled as a root or leaf respectively. By this rule, we

obtain a set of segments labeled as roots and leaves. When a segment is labeled as root

or leaf, the dominant orientation is determined simultaneously, so as the labels of h

and t for this segment. Figure B.1(b) shows root segments in red and leaf segments in

yellow, for the fundus image in Figure B.1(a). Segments with dominant orientations

determined with this model are shown in Figure B.1(c). Segments with dominant

orientations determined are in green, and the head part is in red and the tail part is

in yellow.
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(a) (b) (c) (d) (e) (f)

Figure B.1: An example of determining dominant orientations. (a) A fundus image.

(b) Vessel roots shown in red, and leaves shown in yellow. (c) Dominant orientations

determined after using the root and leaf property. (d) Dominant orientations deter-

mined after using the second model. (e) Dominant orientations determined after using

the parallel rule. (f) Dominant orientations determined after using the neighborhood

connectivity.

The second model is to use the radial distribution of segments with respect to

the OD. For a segment vi, we calculate the displacement of its two end points as a

unit vector denoted as Oi. We also calculate the displacement of its center pixel to

the OD as a unit vector Di. If the angle of Oi and Di is smaller than a degree d, then

the dominant orientation for vi is determined and the endpoint near to the OD is t,

and the other one is h. Figure B.1(d) shows the segments with dominant orientations

determined after using this model.

The third model is the parallel model, which is only applied when there is a

fovea in the image. The displacement of the fovea to the OD center is calculated as

a unit vector, denoted as Dof . For a segment vi, if the angle between Oi and Dof
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is smaller than a degree dpara, the dominant orientation is determined, and the end

point near to the OD is t, and the other one is h. Vessel segments with dominant

orientation determined using this model are shown in Fig. B.1(e).

The fourth model is the rules of neighborhood connectivity, which are applied

on the neighborhood level. Specifically we apply the rules mentioned at the end of

section 4.2.4.1 for neighborhoods with size of 3, 4, 5 and 6. For neighborhoods with

size of 3 and 4, there must be at least 1 h, or at most 2 h. For neighborhoods with

size of 5 and 6, there must be 2 h and the rest are t. With these rules, we could label

some u as h or t for some neighborhoods, thus determining the dominant orientation

of the corresponding segments. Also we could rectify some possible errors made by

previous models if there are more h in a neighborhood than these rules limit. The

basic algorithm to determine a u to be a h or t is based on the direction information.

We assume that in a neighborhood all heads are aligned together, and all tails are

aligned in the opposite direction. For a u, if its associated end point direction is more

aligned with other h, and more on the opposite direction of other t, then it is labeled

as h; otherwise it is labeled as t. The same rule is applied to choose the extra h

that should be changed to t. When there are three h in a neighborhood, one h (the

h that deviates the most with other two h and is aligned the most with all other t)

is changed to t. There are special cases that these rules cannot apply so we design

different strategies or just leave them without any process. For example, when all

end points are h or t, we break the neighborhood and disconnect every end point.

For neighborhood of size 3, when there is one h, one t and one u, we do nothing.
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For neighborhood of size 4, when there is one h, one t and two u, we do nothing.

Fig. B.1(f) shows segments with dominant orientation determined after using these

rules.
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